Основными показателями долговечности, которые характеризуют время работы конструкции до наступления аварийного состояния, являются общий срок службы и остаточный срок эксплуатации, определение которых позволяет более обоснованно подойти к вопросу планирования текущего или капитального ремонта в здании.Рассмотрены наиболее распространенные инженерные методики, которые позволяют прогнозировать для железобетонных конструкций остаточный срок эксплуатации: по нормативным срокам и объектам-аналогам, по внешним признакам, на основе изменения коэффициентов запаса и по критерию прочности. Для ряда методик приведены их модификации. По результатам анализа методик были установлены их основные преимущества и недостатки.В качестве предложения по совершенствованию существующих подходов предложена методика, в которой за остаточный срок эксплуатации принят интервал между визуальными обследованиями.
Идентификаторы и классификаторы
Данный подход составлен с учетом методик [21, 26] и может быть применен для оценки остаточного срока эксплуатации несущих железобетонных конструкций. Исходными параметрами в методике могут являться площадь поперечного сечения Ab, площадь арматуры As, прочность бетона Rb, значения которых должны быть получены на момент строительства и обследования конструкций. Прогнозирование износа для данных параметров происходит путем экстраполяции (см. рис. 4). Точками 1, 3, 6 на данном графике обозначены фактические значения уменьшенной площади поперечного сечения бетона, прочности бетона, площади арматуры соответственно. Точка 2 соответствует прочности бетона в момент времени T0. Срок карбонизации защитного слоя бетона характеризуется точкой 5.
Список литературы
-
Бондаренко В.М., Колчунов В.И. Концепция и направления развития теории конструктивной безопасности зданий и сооружений при силовых и средовых воздействиях // Промышленное и гражданское строительство. 2013. № 2. С. 28-31. EDN: PVSSCZ
-
Казачек В.Г. Проблемы нормирования сроков службы зданий и сооружений // Вестник Полоцкого государственного университета. Серия F: Строительство. Прикладные науки. 2010. № 6. С. 56-71. EDN: VCPXAX
-
Карпенко Н.И., Карпенко С.Н., Ярмаковский В.Н., Ерофеев В.Т. О современных методах обеспечения долговечности железобетонных конструкций // Academia. Архитектура и строительство. 2015. № 1. С. 93-102. EDN: TLLYWH
-
Zheng Y., Zhang Y., Zhuo J., Zhang Y., Wan C. A review of the mechanical properties and durability of basalt fiber-reinforced concrete // Construction and Building Materials. 2022. Vol. 359. DOI: 10.1016/j.conbuildmat.2022.129360 EDN: HJOCVW
-
Alexander M., Beushausen H. Durability, service life prediction, and modelling for reinforced concrete structures - review and critique // Cement and Concrete Research. 2019. Vol. 122. Pp. 17-29. DOI: 10.1016/j.cemconres.2019.04.018
-
Селяев В.П., Бондаренко В.М., Селяев П.В. Прогнозирование ресурса железобетонных изгибаемых элементов, работающих в агрессивной среде, по первой стадии предельных состояний // Региональная архитектура и строительство. 2017. № 2 (31). С. 14-24. EDN: ZRETSV
-
Тамразян А.Г. Методология анализа и оценки надежности состояния и прогнозирование срока службы железобетонных конструкций // Железобетонные конструкции. 2023. Т. 1. № 1. С. 5-18. EDN: MGOLLW
-
Травуш В.И., Мамин А.Н., Кодыш Э.Н., Бобров В.В., Долгова Т.В. Техническое состояние несущих конструкций Останкинской телевизионной башни после 50 лет эксплуатации // Промышленное и гражданское строительство. 2021. № 3. С. 31-36. EDN: RCIQMQ
-
Torres Martín J.E., Rebolledo Ramos N., Chinchón-Payá S., Otero García F., de Haan L. Durability of a reinforced concrete structure exposed to marine environment at the Málaga dock // Case Studies in Construction Materials. 2022. Vol. 17, e01582. DOI: 10.1016/j.cscm.2022.e01582 EDN: JHRHUU
-
Demis S., Papadakis V.G. Durability design process of reinforced concrete structures - Service life estimation, problems and perspectives // Journal of Building Engineering. 2019. Vol. 26. DOI: 10.1016/j.jobe.2019.100876
-
Моисеенко Р.П. Новый вариант расчета долговечности конструкций // Строительная механика и расчет сооружений. 2015. № 3 (260). С. 12-17. EDN: UABYOP
-
Пшеничкина В.А., Сухина К.Н., Бабалич В.С., Сухин К.А. Оценка остаточного ресурса несущих железобетонных конструкций эксплуатируемых промышленных зданий. М.: Изд-во АСВ, 2017. 176 с. EDN: URKHEA
-
Taffese W.Z., Nigussie E., Isoaho J. Internet of Things based Durability Monitoring and Assessment of Reinforced Concrete Structures // Procedia Computer Science. 2019. Vol. 155. Pp. 672-679. DOI: 10.1016/j.procs.2019.08.096
-
Taffese W.Z., Sistonen E. Machine learning for durability and service-life assessment of reinforced concrete structures: Recent advances and future directions // Automation in Construction. 2017. Vol. 77. Pp. 1-14. DOI: 10.1016/j.autcon.2017.01.016
-
Wang Z., Jin W., Dong Y., Frangopol D.M. Hierarchical life-cycle design of reinforced concrete structures incorporating durability, economic efficiency and green objectives // Engineering Structures. 2018. Vol. 157. Pp. 119-131. DOI: 10.1016/j.engstruct.2017.11.022
-
Перельмутер А.В. Избранные проблемы надежности и безопасности строительных конструкций. М.: Изд-во АСВ, 2007. 256 с. EDN: QNMXBJ
-
Смоляго Г.А., Фролов Н.В. Прикладной способ прогнозирования коррозионных повреждений и остаточного ресурса изгибаемых железобетонных элементов с учетом опыта эксплуатации объектов-аналогов // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2019. № 2. С. 49-54. EDN: YXMXNZ
-
Рекомендации по оценке надежности строительных конструкций зданий и сооружений по внешним признакам. М.: ФГУП ЦПП, 2001. 100 с.
-
Добромыслов А.Н. Оценка надежности зданий и сооружений по внешним признакам. М.: АСВ, 2008. 72 с.
-
Келасьев, Н.Г. Кодыш Э.Н., Трекин Н.Н., Терехов И.А., Шмаков Д.С., Чаганов А.Б. Определение срока службы конструкций, зданий и сооружений // Промышленное и гражданское строительство. 2020. № 2. С. 12-17. EDN: SDNOES
-
Методика оценки остаточного ресурса несущих конструкций зданий и сооружений. - ФАУ "ФЦС", 2018. 50 с. https://www.faufcc.ru/upload/methodical_materials/mp34_2018.pdf.
-
Сборники укрупненных показателей восстановительной стоимости зданий и сооружений для переоценки основных фондов/ УПВС Онлайн - Электронная версия. 2022. Режим доступа: https://upvs-online.ru.
-
Гаврильев И.М., Корольков Д.И., Гравит М.В. Модифицированная методика расчета остаточного ресурса с использованием экспоненциального распределения // Вестник Евразийской науки, 2019 №2, https://esj.today/PDF/49SAVN219.pdf. EDN: LTUESO
-
Смоляго Г.А., Фролов Н.В. Современные подходы к расчету остаточного ресурса изгибаемых железобетонных элементов с коррозионными повреждениями // Вестник Томского государственного архитектурно-строительного университета. 2019. Т. 21. № 6. С. 88-100. EDN: XRLXSO
-
Шматков С. Б. Расчет остаточного ресурса строительных конструкций зданий и сооружений // Вестник Южно-Уральского государственного университета. Серия: Строительство и архитектура. 2007. № 22 (94). С. 56-57. EDN: KWYBAH
-
Методика расчетного прогнозирования срока службы железобетонных пролетных строений автодорожных мостов. М.: ГП "Информавтодор", 2002. 140 с.
-
Трекин Н.Н., Кодыш Э.Н., Терехов И.А., Шмаков С.Д., Щедрин О.С. Методика определения эксплуатационной безопасности зданий и их конструкций // Academia. Архитектура и строительство. 2022. № 4. С. 152-159. EDN: XLNAPW
-
Федоров В.С., Трекин Н.Н., Кодыш Э.Н., Терехов И.А. Критерии для оценки категории технического состояния железобетонных колонн, ригелей, балок и ферм // Строительство и реконструкция. 2023. № 3 (107). С. 58-69. EDN: ZTABZK
-
Терехов И.А. Критерии оценки технического состояния железобетонных плит при коррозии арматуры // Строительство и реконструкция. 2022. № 6 (104). С. 128-139. EDN: YGOOMW
-
Ефремов А.М., Бойко Д.В., Сергеевцев Е.Ю., Трекин Н.Н., Кодыш Э.Н., Терехов И.А., Шмаков С.Д. Учет совместного влияния дефектов на несущую способность конструкций // Промышленное и гражданское строительство. 2022. № 8. С. 11-18. EDN: CMXYVA
Выпуск
Другие статьи выпуска
Приводятся результаты экспериментально-теоретических исследований, разработанных большепролетных сборно-монолитных железобетонных оболочек сложной геометрии, собираемых из укрупненных монтажных элементов. Исследования проводились на натурных составных оболочках пролетом 48 и 96 м, ее укрупненных элементов 3х18м и 3х24м, а также на модели оболочки в масштабе 1:10 и 1:4. Исследовано напряженно-деформированное состояние оболочек подобного типа при разных вариантах монтажа и раскружаливания конструкции. Даются рекомендации по рациональным методам возведения оболочек из укрупненных элементов для уникальных зданий общественного назначения.
В современном строительном комплексе г. Москвы для защиты зданий и сооружений от техногенной вибрации, возникающей от движения составов рельсового транспорта (поездов метрополитена, линий железной дороги и трамваев) используются слоистые резинометаллические виброизоляторы [1]. Чаще всего для определения их статических и динамических характеристик применяют метод конечного элемента (МКЭ), который позволяет определить все компоненты напряженно-деформированного состояния и частоты свободных колебаний в нагруженном состоянии практически для любых конструктивных форм изоляторов. Однако, для наиболее популярных программных комплексов, реализующих МКЭ, задача оптимизации конструктивной формы виброизолятора все еще требует значительных временных затрат на многократное изменение расчетной сетки конечных элементов, повторного задания граничных условий и реализацию серии расчетов. Лишь некоторые из программных комплексов, реализующих МКЭ, решают оптимизационные задачи формы рассчитываемого изделия, чаще всего, это относятся к иностранным программным продуктам с универсальным функционалом. Наиболее близко к методу конечного элемента (МКЭ) по своим вычислительным возможностям соответствует вариационно-разностный метод (ВРМ). С использованием ВРМ возможно создать программные модули, многократно автоматически решающие трехмерные задачи теории упругости с учетом изменившейся геометрии виброизолятора: габаритов изделия, расположения перфораций в пределах резиновых слоев, а также толщин резинового слоя и других параметров, важных для получения эффективного технического решения для виброизоляции зданий. Далее в статье описывается методика реализации вариационно-разностного метода (ВРМ) применительно к решению задачи определения компонент напряженно-деформированного состояния внутри трехмерного слоистого виброизолятора с перфорациями различных размеров, имеющими различное расположение относительно контура виброизолятора, т.е. приводится решение задачи оптимизации трехмерной формы виброизолятора.
В большинстве современных исследований, как правило, не учитывается случайный характер сейсмического воздействия, которое является ярко выраженным нестационарным случайным процессом. Адекватная оценка сейсмостойкости зданий и сооружений возможна только на основе методик, позволяющих учесть большую изменчивость параметров сейсмического воздействия. В статье представлена вероятностная методика расчета многоэтажных железобетонных зданий, проектируемых в сейсмически районах с учетом физической, геометрической и конструктивной нелинейности, а также взаимодействия сооружения с нелинейно-деформируемым основанием. Разработанная методика позволяет обеспечить требуемый уровень сейсмостойкости для проектируемых зданий на основе критерия необрушения. В качестве примера рассматривается расчет многоэтажного железобетонного здания. Внешнее сейсмическое воздействие рассматривается в виде нестационарного случайного процесса, который получен посредством умножения стационарного случайного процесса на детерминированную огибающую функцию. Для моделирования нелинейной работы железобетонных конструкций используется модель бетона с функцией накопления повреждений при циклических нагрузках, а также учитывающая деградацию прочности и жесткости материала при интенсивном землетрясении. Расчет проводился с использованием явных методов интегрирования уравнений движения на вычислительном кластере с применением технологии параллельных вычислений. Представленная методика позволяет исследовать характер разрушения железобетонных конструкций при интенсивных землетрясениях и выявлять зоны с дефицитом несущей способности. Предлагаемый вероятностный подход к моделированию сейсмического воздействия как реализации нестационарного случайного процесса с заданными параметрами совместно с учетом нелинейного деформирования железобетонных конструкций здания и основания позволяет управлять уровнем надежности и проектировать здания с заданной обеспеченностью сейсмостойкости.
В публикации представлены результаты опытного конструирования корпуса закладного датчика напряжений, позволяющего определять напряжения в сечении масштабных лабораторных монолитных конструкций, выполненных на основе минеральных и полимерных вяжущих (бетон, гипс и т.п.). Задачами конструирования являлась разработка конструктивного решения корпуса датчика напряжения на основе тензорезисторов, имеющего малые размеры, низкую стоимость изготовления, а также высокую разрешающую способность и стабильность показаний на всем участке чувствительности (напряжение до 400 кгс/см2).Датчик напряжения позволяет с высокой точностью определять напряжение в лабораторных конструкциях, не оказывая значительного влияния на напряженно-деформированное состояние сечения на разных этапах работы конструктивного элемента.
Существующие подходы к проектированию узлов объединения монолитных сталежелезобетонных перекрытий оперируют прочностными и деформативными характеристиками анкерных упоров, которые определяются путем сдвиговых испытаний. В статье рассмотрены основные механизмы разрушения узла объединения сталежелезобетонного перекрытия на уголковых анкерных упорах, закрепляемых с помощью стальных дюбелей; дана оценка влияния основных конструктивных параметров узла на прочность и деформативность данных упоров. В статье проанализированы результаты сдвиговых испытаний, выполненных как авторами, так и другими исследователями. Установлена зависимость прочности и деформативности уголковых анкерных упоров от их высоты, ориентации относительно вектора сдвигающей силы и геометрических параметров профилированного настила.
В железобетонных балках может возникать местная низкая прочность бетона при определенных условиях, например, плохая практика строительства может вызвать такие проблемы как пустоты в бетоне, образование полостей на поверхности, образование трещин в блоках, появление поверхностных раковин и создать участки с низкой прочностью бетона. В этом исследовании представлена реакция изгибаемых шарнирно опертых железобетонных балок с различными местными участками низкой прочности бетона вдоль пролета. Для описания свойств бетона приняты модифицированные модели, а для свойств стали -идеальная упругопластическая модель. Балка разделена на три основные части: одна чувствительна к изгибающему моменту, вторая чувствительна к сдвигу, а третья чувствительна к сцеплению. Переменные включали два типа прочности бетона и один диаметр арматуры. Результаты исследования показывают, что наиболее критическая область с низкой прочностью бетона вдоль пролета балки представляет собой зону вблизи опор, что отражается на пластичности кривых нагрузка-прогиб. Разработана новая обобщенная эмпирическая модель для предсказания эффекта снижения несущей способности от местного низкопрочного бетона.
Издательство
- Издательство
- НИУ МГСУ
- Регион
- Россия, Москва
- Почтовый адрес
- 129337, г. Москва, Ярославское шоссе, д. 26
- Юр. адрес
- 129337, г. Москва, Ярославское шоссе, д. 26
- ФИО
- Акимов Павел Алексеевич (РЕКТОР)
- E-mail адрес
- kanz@mgsu.ru
- Контактный телефон
- +7 (495) 7818007
- Сайт
- https://mgsu.ru