1. Beklemysheva K.A., Grigoriev G.K., Kulberg N.S., Petrov I.B., Vasyukov A.V., Vassilevski Y.V. Numerical simulation of aberrated medical ultrasound signals. Russian Journal of Numerical Analysis and Mathematical Modelling. 2018;33(5):277-288. https://doi.org/10.1515/rnam-2018-0023
2. Perdios D., Vonlanthen M., Martinez F., Arditi M., Thiran J.P. Single-shot CNN-based ultrasound imaging with sparse linear arrays. In: 2020 IEEE International Ultrasonics Symposium (IUS). Las Vegas, NV, USA; 2020. P. 1‒4. https://doi.org/10.1109/IUS46767.2020.9251442
3. Patel D., Tibrewala R., Vega A., Dong L., Hugenberg N., Oberai A. Circumventing the solution of inverse problems in mechanics through deep learning: Application to elasticity imaging. Computer Methods in Applied Mechanics and Engineering. 2019;353:448-466. https://doi.org/10.1016/j.cma.2019.04.045
4. Hongya Lu, Haifeng Wang, Qianqian Zhang, Sang Won Yoon, Daehan Won. A 3D Convolutional Neural Network for Volumetric Image Semantic Segmentation. Procedia Manufacturing. 2019;39:422-428. https://doi.org/10.1016/j.promfg.2020.01.386
5. Potočnik B., Šavc M. Deeply-Supervised 3D Convolutional Neural Networks for Automated Ovary and Follicle Detection from Ultrasound Volumes. Applied Sciences. 2022;12(3):1246. https://doi.org/10.3390/app12031246
6. Brown K., Dormer J., Fei B., Hoyt K. Deep 3D convolutional neural networks for fast super-resolution ultrasound imaging. Proceedings SPIE 10955, Medical Imaging 2019: Ultrasonic Imaging and Tomography. 2019;10955:1095502. https://doi.org/10.1117/12.2511897
7. Mast T.D., Hinkelman L.M., Metlay L.A., Orr M.J., Waag R.C. Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall. J. Acoust. Soc. Amer. 1999;6:3665-3677. https://doi.org/10.1121/1.428209
8. Madsen E.L., Sathoff H.J., Zagzebski J.A. Ultrasonic shear wave properties of soft tissues and tissuelike materials. J. Acoust. Soc. Am. 1983;74(5):1346-1355. https://doi.org/10.1121/1.390158
9. Vassilevski Y.V., Beklemysheva K.A., Grigoriev G.K., Kulberg N.S., Petrov I.B., Vasyukov A.V. Numerical modelling of medical ultrasound: phantom-based verification. Russian Journal of Numerical Analysis and Mathematical Modelling. 2017;32(5):339-346. https://doi.org/10.1515/rnam-2017-0032
10. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science. 2015;9351:234-241. https://doi.org/10.1007/978-3-319-24574-4_28
11. Paserin O., Mulpuri K., Cooper A., Abugharbieh R., Hodgson A. Improving 3D Ultrasound Scan Adequacy Classification Using a Three-Slice Convolutional Neural Network Architecture. In: CAOS 2018 (EPiC Series in Health Sciences Vol 2). Beijing, China; 2018. P. 152-156. https://doi.org/10.29007/2tct
12. Jiang M., Spence J.D., Chiu B. Segmentation of 3D ultrasound carotid vessel wall using U-Net and segmentation average network. In: 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal, QC, Canada; 2020. P. 2043-2046. https://doi.org/10.1109/EMBC44109.2020.9175975
13. Zheng Y., Liu D., Georgescu B., Nguyen H., Comaniciu D. 3D deep learning for efficient and robust landmark detection in volumetric data. Lecture Notes in Computer Science. 2015;9349:565-572. https://doi.org/10.1007/978-3-319-24553-9_69
14. Ghimire K., Chen Q., Feng X. Patch-Based 3D UNet for Head and Neck Tumor Segmentation with an Ensemble of Conventional and Dilated Convolutions. Lecture Notes in Computer Science. 2021;12603:78-84. https://doi.org/10.1007/978-3-030-67194-5_9
15. Coupeau P., Fasquel J.B., Mazerand E., Menei P., Montero-Menei C.N., Dinomais M. Patch-based 3D U-Net and transfer learning for longitudinal piglet brain segmentation on MRI. Computer Methods and Programs in Biomedicine. 2022;214:106563. https://doi.org/10.1016/j.cmpb.2021.106563