1 Grilli, A., Bocci, M. and Tarantino, A.M. (2013) Experimental Investigation on Fibre-Reinforced Cement-Treated Materials Using Reclaimed Asphalt. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2012.08.040
2 Lukpanov, R., Dyusembinov, D., Shakhmov, Z., Tsygulov, D., Aibuldinov, Y. and Vatin, N.I. (2022) Impregnating Compound for Cement-Concrete Road Pavement. Crystals, 12. https://doi.org/10.3390/cryst12020161
3 Chandrappa, A.K. and Biligiri, K.P. (2016) Pervious Concrete as a Sustainable Pavement Material-Research Findings and Future Prospects: A State-of-the-Art Review. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2016.02.054
4 Ceylan, H., Kim, S., Gopalakrishnan, K., Schwartz, C.W. and Li, R. (2014) Sensitivity Analysis Frameworks for Mechanistic-Empirical Pavement Design of Continuously Reinforced Concrete Pavements. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2014.09.091
5 Begich, Y.E., Klyuev, S. V., Jos, V.A. and Cherkashin, A. V. (2020) Fine-Grained Concrete with Various Types of Fibers. Magazine of Civil Engineering. https://doi.org/10.18720/MCE.97.2
6 Prakash, R., Divyah, N., Srividhya, S., Avudaiappan, S., Amran, M., Naidu Raman, S., Guindos, P., Vatin, N.I. and Fediuk, R. (2022) Effect of Steel Fiber on the Strength and Flexural Characteristics of Coconut Shell Concrete Partially Blended with Fly Ash. Materials, 15, 4272. https://doi.org/10.3390/ma15124272
7 Murali, G., Abid, S.R., Amran, M., Fediuk, R., Vatin, N. and Karelina, M. (2021) Combined Effect of Multi-Walled Carbon Nanotubes, Steel Fibre and Glass Fibre Mesh on Novel Two-Stage Expanded Clay Aggregate Concrete against Impact Loading. Crystals, 11, 720. https://doi.org/10.3390/cryst11070720
8 Huang, X., Ranade, R., Ni, W. and Li, V.C. (2013) Development of Green Engineered Cementitious Composites Using Iron Ore Tailings as Aggregates. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2013.03.088
9 Ali, N., Canpolat, O., Aygörmez, Y. and Al-Mashhadani, M.M. (2020) Evaluation of the 12–24 Mm Basalt Fibers and Boron Waste on Reinforced Metakaolin-Based Geopolymer. Construction and Building Materials, 251. https://doi.org/10.1016/j.conbuildmat.2020.118976
10 Khan, M. and Cao, M. (2021) Effect of Hybrid Basalt Fibre Length and Content on Properties of Cementitious Composites. Magazine of Concrete Research, 73, 487–498.
https://doi.org/10.1680/jmacr.19.00226
11 Khan, M., Cao, M., Xie, C. and Ali, M. (2021) Hybrid Fiber Concrete with Different Basalt Fiber Length and Content. Structural Concrete, suco.202000472. https://doi.org/10.1002/suco.202000472
12 Liu, W., Wan, Y., Lei, F., Liu, X., Wang, S., Zhao, Z., Li, H. and Wang, H. (2024) Innovation and Performance of Lead Smelting Slag-Based Multi-Solid Waste Pavement Concrete Materials: Ratio Design, Mechanical Properties, Hydration Products, Heavy Metal Leaching. Construction and Building Materials, 411, 134824. https://doi.org/10.1016/j.conbuildmat.2023.134824
13 AzariJafari, H., Yahia, A. and Ben Amor, M. (2016) Life Cycle Assessment of Pavements: Reviewing Research Challenges and Opportunities. Journal of Cleaner Production, 112, 2187–2197. https://doi.org/10.1016/j.jclepro.2015.09.080
14 Strokova, V.V., Markova, I.Y., Markov, A.Y., Stepanenko, M.A., Nerovnaya, S.V., Bondarenko, D.O. and Botsman, L.H. (2022) Properties of a Composite Cement Binder Using Fuel Ashes. Key Engineering Materials, 909, 184–190. https://doi.org/10.4028/p-tm4y4j
15 Singh, M. and Siddique, R. (2013) Effect of Coal Bottom Ash as Partial Replacement of Sand on Properties of Concrete. Resources, Conservation and Recycling. https://doi.org/10.1016/j.resconrec.2012.12.006
16 Wang, H.C., Wu, C.Y., Chung, C.C., Lai, M.H. and Chung, T.W. (2006) Analysis of Parameters and Interaction between Parameters in Preparation of Uniform Silicon Dioxide Nanoparticles Using Response Surface Methodology. Industrial and Engineering Chemistry Research. https://doi.org/10.1021/ie060299f
17 Zhang, M., Ma, D., Cui, J., Liu, K., Sun, S. and Li, J. (2024) Scouring Erosion Resistance of Nano-Marine Concrete under the Coupled Effect of Chloride Attack and Dry - Wet Cycles. Construction and Building Materials, 411, 134227. https://doi.org/10.1016/j.conbuildmat.2023.134227
18 Yasien, A.M., Bassuoni, M.T. and Ghazy, A. (2024) Phase Change Material Nanocomposites as an Internal Curing Aid for Nano-Modified Concrete under Cold Weather. Construction and Building Materials, 411, 134490. https://doi.org/10.1016/j.conbuildmat.2023.134490
19 Ma, D., Zhou, D., Zhang, M., Cui, J. and Liu, K. (2024) Scouring Erosion Resistance of Nano-Marine Concrete under Simultaneous Flexural Load and Chloride Attack. Journal of Building Engineering, 86, 108621. https://doi.org/10.1016/j.jobe.2024.108621
20 Constantinides, G. and Ulm, F.J. (2007) The Nanogranular Nature of C-S-H. Journal of the Mechanics and Physics of Solids. https://doi.org/10.1016/j.jmps.2006.06.003
21 Ulm, F.J. (2012) Nano-Engineering of Concrete. Arab. J. Sci. Eng. https://doi.org/https://doi.org/10.1007/s13369-012-0181-x
22 Masoero, E., Del Gado, E., Pellenq, R.J.-M., Ulm, F.-J. and Yip, S. (2012) Nanostructure and Nanomechanics of Cement: Polydisperse Colloidal Packing. Physical Review Letters, 109, 155503. https://doi.org/10.1103/PhysRevLett.109.155503
23 Liseitsev, Y. (2024) Modified Fiber-Reinforced Concrete for Road and Airfield Pavements. Alfa Build, 30, 3001. https://doi.org/10.57728/ALF.30.1
24 de Oliveira, L.B., de Azevedo, A.R.G., Marvila, M.T., Pereira, E.C., Fediuk, R. and Vieira, C.M.F. (2022) Durability of Geopolymers with Industrial Waste. Case Studies in Construction Materials, 16, e00839. https://doi.org/10.1016/j.cscm.2021.e00839
25 Fediuk, R., Mochalov, A. and Timokhin, R. (2018) Review of Methods for Activation of Binder and Concrete Mixes. AIMS Materials Science, 5. https://doi.org/10.3934/matersci.2018.5.916