Получены трехмерные распределения скорости, температуры и давления в сверхзвуковом воздушном потоке при M = 2, а также плотности тока в инициируемом в нем разряде. Газовый разряд постоянного тока величиной 10 А рассматривался в гидродинамическом приближении в рамках канальной модели. Рассмотрена эволюция продольно-поперечного разряда в диапазоне времени t до 20 мкс. Показано, что разряд движется практически со скоростью основного сверхзвукового воздушного потока, достаточно слабо его возмущая. По полученным в расчетах характерным значениям плотности тока и температуры газа 8000–10000 К в разрядном канале сделаны оценки концентрации электронов ne ~ 1016 см–3. Оценена напряженность поля E ~ 125 В/см и приведенная напряженность поля в канале разряда E/N около 30 Тд. В конфигурации аэродинамической модели с укороченными электродами показан переход к закрепленной на их концах фазе разряда.
Идентификаторы и классификаторы
В настоящее время низкотемпературная газоразрядная плазма в потоке газа широко используется в научных исследованиях и различных технологических приложениях. Существует огромное число разновидностей газовых разрядов, которые возможно использовать для целей плазменной аэродинамики [1]. Например, изучается возможность применения для воспламенения высокоскоростных топливовоздушных потоков высоковольтных разрядов с длительностью импульсов в наносекундном диапазоне [2], неравновесных ВЧ-разрядов [3], а также других разрядов, таких как диэлектрический барьерный разряд (DBD), на основе которого также конструируются различные плазменные актуаторы [4]. В [5, 6] исследуются скользящие по диэлектрической поверхности электродные разряды типа “плазменный лист”. Исследуются нетепловые эффекты плазменного усиления горения в противоточной горелке со стабилизированной магнитным полем скользящей дугой [7].
Список литературы
1. Leonov S.B. // Energies. 2018. V. 11. P. 1733. DOI: 10.3390/en11071733 EDN: YJSRXV
2. Lin Bing-xuan, Wu Yun, Zhang Zhi-bo, Chen Zheng // Combustion and flame. 2017. V. 182. P. 102–113. DOI: 10.1016/j.combustflame.2017.04.022
3. Chintala N., Meyer R., Hicks A., Bao A., Rich J.W., Lempert W.R., Adamovich I.V. // Journal of Propulsion and Power. 2005. T. 21. № 4. C. 583. DOI: 10.2514/1.10865
4. Enloe C.L., McLaughlin T.E., VanDyken R.D., Kach-ner K.D., Jumper E.J., Corke T.C. // AIAA JOURNAL. 2004. V. 42. № 3. P. 589. DOI: 10.2514/1.2305 EDN: LYLUAN
5. Знаменская И.А., Луцкий А.Е., Мурсенкова И.В. // Письма в ЖТФ. 2004. Т. 30. № 24. С. 38. http://elibrary.lt/resursai/Uzsienio%20leidiniai/ioffe/pztf/2004/24/pztf_t30v24_07.pdf. EDN: RDBMZL
6. Знаменская И.А., Латфуллин Д.Ф., Луцкий А.Е., Мурсенкова И.В., Сысоев Н.Н. // ЖТФ. 2007. Т. 77. № 5. С.10. http://elibrary.lt/resursai/Uzsienio%20leidiniai/ioffe/ztf/2007/05/ztf7705_02.pdf. EDN: RCTAVP
7. Fridman A., Gutsol A., Gangoli S., Ju Y., Ombrello T. // Journal of Propulsion and Power. 2008. T. 24. № 6. C. 1216. DOI: 10.2514/1.24795 EDN: MGBPUF
8. Шибков В.М., Шибкова Л.В., Логунов А.А. // Физика плазмы. 2018. Т. 44. № 8. С. 661. item.asp?id=35642593. EDN: XZZHVR
9. Шибков В.М., Шибкова Л.В., Логунов А.А. // Физика плазмы. 2017. Т. 43. № 3. С. 314. DOI: 10.7868/S0367292117030118 EDN: YIVTST
10. Шибков В.М., Шибкова Л.В., Логунов А.А. // Вестник Московского университета. Сер. 3. Физика. Астрономия. 2018. № 5. С. 44. EDN: MLUXCL
11. Шибков В.М., Шибкова Л.В., Логунов А.А. // Вестник Московского университета. Сер. 3. Физика. Астрономия. 2017. № 3. С. 76. EDN: ZDWQIP
12. Копыл П.В., Сурконт О.С., Шибков В.М., Шибко-ва Л.В. // Физика плазмы. 2012. Т. 38. № 6. С. 551. EDN: OXXWCZ
13. Зарин А.С., Кузовников А.А., Шибков В.М. Свободно локализованный СВЧ-разряд в воздухе. М.: Нефть и газ., 1996.
14. Шибков В.М., Двинин С.А., Ершов А.П., Константиновский Р.С., Сурконт О.С., Черников В.А., Шибкова Л.В. // Физика плазмы. 2007. Т. 33. № 1. С. 77. EDN: HYRPAB
15. Шибков В.М., Шибкова Л.В., Громов В.Г., Кара-чев А.А., Константиновский Р.С. // Теплофизика высоких температур. 2011. 49. № 2. С. 163. EDN: NEFZLV
16. Logunov A.A., Kornev K.N., Shibkova L.V., Shibkov V.M. // High Temperature. 2021. Vol. 59. № 1. P. 19–26. EDN: MEMAUW
17. Шибкова Л.В., Шибков В.М., Логунов А.А., Долб-ня Д.С., Корнев К.Н. // Теплофизика высоких температур. 2020. Т. 58. № 6. С. 1–8. EDN: JIIZLE
18. Двинин С.А., Ершов А.П., Тимофеев И.Б., Черни-ков В.А., Шибков В.М. // Теплофизика высоких температур. 2004. Т. 42. № 2. С. 181–191. EDN: OXKIPT
19. Kolev S., Bogaerts A. // Plasma Sources Science and Technology. 2014. T. 24. № 1. C. 015025.
20. Shang J.S., Huang P.G., Yan H., Surzhikov S.T. // Journal of Applied Physics. 2009. T. 105. № 2. C. 023303. EDN: LLRMRB
21. Nishihara M., Adamovich I.V. // IEEE transactions on plasma science. 2007. T. 35. № 5. C. 1312-1324. EDN: MLCUKT
22. Firsov A., Bityurin V., Tarasov D., Dobrovolskaya A., Troshkin R., Bocharov A. // Energies. 2022. T. 15. № 19. C. 7015. EDN: XMWTHM
23. Абрамович Г.Н. Прикладная газовая динамика. М.: Наука, 1976.
24. Boulos M.I., Fauchais P., Pfender E. Thermal Plasmas: Fundamentals and Applications, Plenum Press, Springer, 1994.
25. Райзер Ю.П. Физика газового разряда. М.: Наука. Гл. ред. физ.-мат. лит., 1987. С. 511.
26. Предводителев А.С. Таблицы термодинамических функций воздуха (для температур от 6 000 до 12 000 К и давлений от 0.001 до 1 000 атмосфер). М.: Изд-во АН СССР. 1957.
Выпуск
Другие статьи выпуска
Выполнены численные расчеты нестационарной неравновесной функции распределения электронов в газе метане CH4, возбуждаемом источником высокоэнергичных электронов с начальной энергией 1 кэВ. Были учтены основные элементарные процессы взаимодействия электронов с молекулами метана. Вычислены доли потерь энергии электронов на ионизацию, диссоциацию и возбуждение различных уровней молекул, позволяющие определять скорости неупругих процессов взаимодействия электронов с молекулами метана CH4.
Одной из актуальных задач атомной энергетики является переработка отработавшего ядерного топлива. Такая переработка подразумевает отделение актиноидов от продуктов деления урана. Одним из методов переработки может стать плазменная масс сепарация. В ОИВТ РАН в последние 10 лет активно велись исследования, направленные на развитие различных аспектов, связанных с плазменной масс-сепарацией. В статье приведен обзор основных результатов этих исследований по четырем направлениям: численные расчеты и анализ схем сепарации; генерация плазмы буферного газа и создание потенциала в ней; источник плазмы для инжекции смеси разделяемых веществ; сепарация модельных веществ.
Сообщается об обнаружении противоречия, возникающего в решениях задач о профилях нелинейных продольных электростатических волн в плазме методом псевдопотенциала Сагдеева. Противоречие проявляется в неравенстве среднего за период значения концентрации частиц и заданной концентрации невозмущенной плазмы. Показано, что причина возникновения противоречия связана с весьма распространенной неточностью в постановке таких задач. Предложено корректировать постановку подобных задач и изменить интерпретацию получаемых этим методом решений, применив иные начальные условия: необходимо задавать вместо концентрации невозмущенной плазмы концентрацию частиц в точках, в которых потенциал φ принят равным нулю. С такими начальными условиями противоречие полностью снимается.
Исследовано поддержание СВЧ газового разряда стоячей поверхностной электромагнитной волны (ПЭВ) дипольной моды. Стоячая волна формировалась между двумя плоскими зеркалами, образующими структуру типа открытого резонатора на поверхностной волне. Измеренная добротность открытого резонатора составляет несколько десятков. Определена структура электрического поля свободного разряда и разряда, поддерживаемого полем стоячей поверхностной волны. Показано, что в этой системе возбуждение резонанса происходит на чисто поверхностной волне. При возрастании энергии поля между зеркалами на 8–10 дБ, концентрация электронов возрастает на ~50%. Оценено отношение энергии поля поверхностной волны в плазме и в окружающем разряд пространстве, как в случае свободного разряда, так и при резонансе. Эксперимент и численное моделирование показали, что структура разряда зависит от возбуждаемой моды стоячей ПЭВ.
Обсуждаются теоретические исследования волновых процессов во вращающейся астрофизической плазме. Особое внимание уделено новым теоретическим моделям астрофизической плазмы, таким как магнитогидродинамическое приближение мелкой воды и неупругое приближение наряду с часто применяемым приближением Буссинесска. Помимо традиционного приближения для силы Кориолиса обсуждаются эффекты, вызванные ее нетрадиционным представлением, учитывающим горизонтальную составляющую вращения. Подробно описаны линейные волны в такой плазме и обсуждаются их дисперсионные характеристики. Приведен обзор неустойчивостей в астрофизической плазме вследствие нелинейных эффектов.
Издательство
- Издательство
- ИОФ РАН
- Регион
- Россия, Москва
- Почтовый адрес
- 119991 ГСП-1, г. Москва, ул. Вавилова, д. 38
- Юр. адрес
- 119991 ГСП-1, г. Москва, ул. Вавилова, д. 38
- ФИО
- Гарнов Сергей Владимирович (Директор)
- E-mail адрес
- office@gpi.ru
- Контактный телефон
- +7 (749) 9503873
- Сайт
- https://www.gpi.ru/