1. Kallenborn Z, Bleek PC. Swarming destruction: drone swarms and chemical, biological, radiological, and nuclear weapons. The Nonproliferation Review. 2018;25(5-6):523-43. https://doi.org/10.1080/10736700.2018.1546902
2. Borgonovi F, Calvino F, Criscuolo C, Nania J, Nitschke J, O’Kane L, et al. Emerging trends in AI skill demand across 14 OECD countries. OECD Artificial Intelligence Papers. 2023; No. 2, OECD Publ, Paris. https://doi.org/10.1787/7c691b9a-en
3. Filippucci F, Gal P, Jona-Lasinio C, Leandro A, Nicoletti G. The impact of Artificial Intelligence on productivity, distribution and growth: Key mechanisms, initial evidence and policy challenges, OECD Artificial Intelligence Papers, 2024; No. 15, OECD Publ, Paris. https://doi.org/10.1787/8d900037-en
4. Guo X, Liu X, Zhu E, Yin J. Deep Clustering with Convolutional Autoencoders. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy ES, Eds. Neural Information Processing. Vol. 10635. Cham: Springer; 2017. P. 373-82. https://doi.org/10.1007/978-3-319-70096-0_39
5. Vasudevan SK, Pulari SR, Vasudevan S. CNN - Convolutional Neural Networks: A Complete Understanding. In: Deep Learning. Chapman and Hall/CRC; 2021. P. 81-120. https://doi.org/10.1201/9781003185635-5.
6. Chuan Z, du y. Early Identification Methods for Emerging Technologies Based on Weak Signals. 2022. https://doi.org/10.21203/rs.3.rs-2291140/v1
7. Ghayoumi M. Deep Convolutional Generative Adversarial Networks (DCGANs). In: Generative Adversarial Networks in Practice. New York: Chapman and Hall/CRC; 2023. P. 220-57. https://doi.org/10.1201/9781003281344-8
8. Layton J, Hu F. Attacks on Deep Reinforcement Learning Systems: A Tutorial. In: AI, Machine Learning and Deep Learning. CRC Press; 2023. P. 79-82. https://doi.org/10.1201/9781003187158-6
9. Бурков А. Машинное обучение без лишних слов. СПб.: Питер; 2020. 192 c. Burkov A. Machine learning without further ado. St. Petersburg: Peter; 2020. 192 p (in Russian).
10. Suh C. Machine Learning Applications. Convex Optimization for Machine Learning. Ch. 3. Boston - Delft; 2022. P. 185-328. https://doi.org/10.1561/9781638280538.ch3
11. Thomas P. Trappenberg. Machine learning with sklearn. Fundamentals of Machine Learning. 2019. Р. 38-65. https://doi.org/10.1093/oso/9780198828044.003.0003
12. Girasa R. Applications of AI and Projections of AI Impact. Artificial Intelligence as a Disruptive Technology. Palgrave Macmillan, Cham.; 2020. P. 23-67. https://doi.org/10.1007/978-3-030-35975-1_2
13. Кондауров РЮ, Ганган ДА. Направления развития перспективного вооружения и средств РХБ защиты с элементами искусственного интеллекта в системе автоматизации управления. Военная мысль. 2022;(7):79-85.
14. Segev E. How to conduct semantic network analysis. Semantic Network Analysis in Social Sciences. 2021. P. 16-31. https://doi.org/10.4324/9781003120100-1
15. Poola L, Aparna P. ‘A Mixed Parallel and Pipelined Efficient Architecture for Intra Prediction Scheme in HEVC’. IETE Technical Review. 20224;39(2):244-56. https://doi.org/10.1080/02564602.2020.1841686
16. Li Z. Pipeline Spatial Data Model. Pipeline Spatial Data Modeling and Pipeline WebGIS. 2020. P. 29-102. https://doi.org/10.1007/978-3-030-24240-4_3
17. Li Z, Yang L. Pipeline Real-Time Data, Pipeline SCADA and OPC. Pipeline Real-time Data Integration and Pipeline Network Virtual Reality System. 2021. P. 7-20. https://doi.org/10.1007/978-3-030-62110-0_2
18. Timm S, Yuan W, Benjamin D. Scale Tests of the New DUNE Data Pipeline. Scale Tests of the New DUNE Data Pipeline. 2023. https://doi.org/10.2172/1988450
19. Meedeniya D. Enhancement of Deep Learning Architectures. Deep Learning. 2023. P. 112-46. https://doi.org/10.1201/9781003390824-6
20. Hemanand D, Bhavani NPG, Ayub S, Ahmad MW, Narayanan S, Haldorai A. Multilayer vectorization to develop a deeper image feature learning model. Automatika. 2023;64(2):355-64. https://doi.org/10.1080/00051144.2022.2157946
21. Calvino F, Criscuolo C, Dernis H, Samek L. What technologies are at the core of AI?: An exploration based on patent data, OECD Artificial Intelligence Papers. 2023. No. 6. OECD Publ, Paris. https://doi.org/10.1787/32406765-en/