Представлена информация об основных конструкторских решениях, принятых в ходе реализованного в АО «ГНЦ НИИАР» инвестиционного проекта Госкорпорации «Росатом» по модернизации активной зоны исследовательского реактора СМ-3. Основными целями модернизации реактора СМ-3 являлись создание новой активной зоны с улучшенными экспериментальными характеристиками и проведение замены конструкций активной зоны для продления срока эксплуатации реактора. Описаны особенности модернизированной центральной зоны уникальной научной установки – высокопоточного реактора СМ-3, выполнен сравнительный анализ ее характеристик с конструкцией,находившейся в эксплуатации с 1993 по 2019гг. В новой нейтронной ловушке удалось расположить за счет эффективного использования полезного объема 57 ячеек со сверхвысокой плотностью потока нейтронов для облучения мишеней вместо 27-ми ячеек в старой конструкции за счет исключения из конструкции активной зоны центрального компенсирующего органа (ЦКО) и создания новых органов аварийной защиты с совмещением функций ЦКО. Рассмотрены пути решения проблем, возникавших на всех стадиях реализации проекта, включая демонтаж, транспортировку и размещение на длительное хранение выработавших ресурс элементов, создание новой центральной зоны и ее установку в корпус реактора. Опыт эксплуатации реактора с новой активной зоной подтвердил правильность разработанных технических решений и продемонстрировал эксплуатационную надежность и безопасность эксплуатации реактора СМ-3.
Идентификаторы и классификаторы
Исследовательский реактор СМ-3 на промежуточных нейтронах тепловой мощностью
100 МВт имеет плотность потока нейтронов более 5·1015 с–1⋅см–2 и является самым высокопоточным материаловедческим реактором в мире. СМ-3 используется для исследования физико-механических свойств материалов ядерных реакторов под воздействием нейтронного облучения, проведения фундаментальных научных исследований, наработки трансплутониевых элементов (ТПЭ) и радионуклидов с высокой удельной активностью. В период с июля 2019 г. по октябрь 2020 г. была проведена радикальная модернизация реактора с заменой всех внутрикорпусных устройств. Решение по его модернизации было принято в связи с предстоящим окончанием срока эксплуатации, без модернизации дальнейшая работа реактора была бы невозможна.
Список литературы
- Tuzov A.A., Izhutov A.L., Petelin A.L., Divnogorsky A.V. Status of the SM-3 reactor core refurbishment / Proc. of the European Research Reactor Conference (RRFM 2019), Jordan, 2019. Электронный ресурс: https://www.euronuclear.org/download/rrfm-2019-part-3/ (дата доступа 08.04.2024).
- Петелин А.Л., Гурьева М.Н., Сазонтов С.А., Винокуров В.С., Булгаков Б.В. Разработка конструкции модернизированной центральной зоны реакторной установки СМ: принятые решения и обоснование ресурса эксплуатации / Международная конференция «Безопасность исследовательских ядерных установок», г. Димитровград, 19-21 мая 2021 г. – Димитровград: АО «ГНЦ НИИАР», 2021. С. 24–25. Электронный ресурс: http://niiar.ru/sites/default/files/conproc/tezisy_bezopasnost_iyau_19-21.05.21.pdf (дата доступа 08.04.2024).
- Петелин А.Л., Сазонтов С.А., Малков А.П., Насыров Н.Р., Винокуров В.С., Петров Р.В., Петров А.Г., Осипов А.А., Заикин А.А., Садов И.В., Чуприков М.В., Чигинцев Г.Д., Шиманский С.А., Кошкин В.В. Модернизация аппаратуры системы управления и защиты реакторной установки СМ / Международная конференция «Безопасность исследовательских ядерных установок», г. Димитровград, 19 – 21 мая 2021 г. – Димитровград: АО «ГНЦ НИИАР», 2021. – С. 33–35. Электронный ресурс: http://niiar.ru/sites/default/files/conproc/tezisy_bezopasnost_iyau_19-21.05.21.pdf (дата доступа 08.04.2024).
- Шадымова Т.А, Винокуров В.С., Иванов В.В. Устройство для герметизации соединения между корпусом и верхним защитным перекрытием ядерного реактора. Патент РФ No 213678 U1. Дата заявления: 18.04.2022, дата публикации: 21.09.2022.
Выпуск
Другие статьи выпуска
Существует массив экспериментальных данных, подтверждающих особенность поведения оксидного топлива в первые часы после выхода реактора на мощность. При первом выходе реактора на мощность и возрастании температуры таблетки оксидного топлива растрескиваются из-за значительного температурного градиента. Последующие изменения связаны с накоплением и перераспределением продуктов деления, что проявляется в изменении пористости топливной матрицы и образовании (или увеличении диаметра) центрального отверстия. На основании опубликованных материалов, посвященных исследованию свойств и особенности поведения оксидного топлива в первые часы после выхода реактора на мощность, предложена методика учета изменения пористости оксидного топлива и изменения внутреннего диаметра топливной таблетки. Выполнено тестирование методики на примере реального эксперимента по перераспределению пористости по радиусу топливной таблетки. Поскольку на величину максимальной температуры топлива наличие и величина внутреннего отверстия топливной таблетки и изменение пористости топливной матрицы оказывают заметное влияние, учет перестройки оксидного топлива в расчетном моделировании работы твэлов под облучением позволяет более корректно оценивать работоспособность твэла в целом. Предложенная методика может быть использована в программах расчета напряженно-деформированного состояния (НДС) твэлов для учета изменения пористости топлива и изменения внутреннего диаметра топливной таблетки.
Проведен расчетный анализ возможности замыкания ядерного топливного цикла по плутонию в реакторе ВВЭР-1200. Определены и проанализированы основные факторы, формирующие необходимость вовлечения плутония в топливный цикл и замыкания топливного цикла. Для формирования топливной композиции рассматривались несколько источников плутония, а именно, плутоний из отработавшего топлива реакторов ВВЭР, БН и РБМК и плутоний высокого качества. Информация о запасах энергетического плутония различного происхождения, в том числе низкофонового плутония, была найдена в открытых опубликованных источниках. Определены качество каждого из видов плутония и их ценность в тепловом спектре реактора. Рассмотрены стратегии однократного, двукратного и многократного вовлечения плутония. Определены недостатки и преимущества каждого из рассматриваемых видов плутония. Определены время выхода на стационарный уровень по плутонию, доля плутония подпитки при выходе на стационарный уровень, потенциал использования плутония и т.д. Проведены оценки по времени выжигания каждого из видов плутония и экономии природного урана, а также предложен вариант дожигания плутония на примере замкнутого топливного цикла реактора ВВЭР-1200.
Представлены результаты расчетов накопления и трансмутации актиноидов в процессе работы теплового реактора c уран-плутониевым МОКС-топливом. Целью является исследование неопределенности при расчетах выгорания топлива и накопления минорных актиноидов с использованием различных программных комплексов, базирующихся на единой базе ядерных констант. Исследования выполнены на примере расчетов выгорания тестовой модели тепловыделяющего элемента инновационного реактора с регулируемым спектром нейтронов с МОКС-топливом. Расчеты выполнены с использованием программных комплексов MCNP5 и WIMS-D5.Полученные результаты с помощью MCNP5 и WIMS-D5 проанализированы и сопоставлены между собой. В расчетах использованы библиотеки ядерных данных на основе ENDF/B-VII.1 и РОСФОНД-2020.2. Для программы MCNP5 файлы данных были переработаны в формат АСЕ, а для WIMS-D5 представлены в различных энергетических разбивках в 69-ти и 172-х группах. Расчеты выгорания топлива и накопления минорных актиноидов с использованием программы MCNP5 проведены в комплексе c модулями расчета изотопной кинетики ORIGEN2 и CINDER90. При этом использовались различные библиотеки ядерных данных на основе ENDF/B-VII.1 и РОСФОНД-2020.2. Проведенные расчеты по MCNP5 c модулями ORIGEN2 и CINDER90 показали их согласованность. Для программы WIMS-D5 в сравнении с расчетами по MCNP5 показано, что более надежными являются результаты, полученные в 172-х группах.
Переход БН-800 на полную загрузку смешанным оксидным уран-плутониевым топливом и планы по вовлечению в топливный цикл минорных актинидов привели к увеличению константной составляющей погрешности. С целью минимизации этой составляющей погрешности решено создать унифицированную систему групповых констант, с одинаковой точностью описывающей как урановую загрузку, так и загрузку смешанным оксидным уран-плутониевым топливом. Процесс формирования новой системы групповых констант включил в себя выбор исходных файлов нейтронных данных, обновление данных таблиц основных нейтронных сечений, факторов самоэкранировки и коэффициентов Допплера, а также данных о спектрах деления для основных топливных нуклидов. Проведена оценка методической составляющей погрешности для тестовых моделей активной зоны БН-800. С использованием системы групповых констант БНАБ-РФ22 удалось оценить поправку в 299-групповом расчете, которая составила 0,3%. Ранее при использовании библиотеки БНАБ-93 такой возможности не было ввиду отсутствия преемственности файлов оцененных нейтронных данных и используемых групповых констант. Таким образом, создание унифицированной системы групповых констант позволит минимизировать константную составляющую погрешности и обеспечит более точное описание различных топливных конфигураций активных зон реакторов на быстрых нейтронах.
Представлены результаты многолетнего (1976–2019 гг.) радиоэкологического мониторинга водоема-охладителя Белоярской АЭС. Изучено влияние сбросных технологических вод тепловых (AMБ-100 и AMБ-200) и быстрых (БН-600 и БН-800) реакторов АЭС на содержание техногенных радионуклидов в поверхностных водах, донных отложениях, макрофитах и ихтиофауне Белоярского водохранилища. Показано, что технология производства электроэнергии на Белоярской АЭС, основанная на быстрых реакторах, оказывает гораздо меньшее влияние на поступление техногенных радионуклидов в водную экосистему водохранилища. Представлена долговременная динамика удельной активности 60Co, 90Sr, 137Cs и 3H в основных компонентах водной экосистемы на разном расстоянии от источника сброса радионуклидов. В течение всего периода мониторинговых исследований снижение удельной активности радионуклидов станционного происхождения в поверхностных водах составило 4,3–74,5 раза, в донных отложениях – 10–505 раз, в макрофитах – 13–25800 раз, в ихтиофауне – 1,3 – 44,6 раза. Улучшение радиоэкологического состояния водоема-охладителя произошло в результате остановки эксплуатации тепловых реакторов первой очереди атомной станции (AMБ-100 и AMБ-200), а также за счет распада и перераспределения радиоизотопов из водной фазы в донные отложения и миграции с водным стоком из водохранилища в речную систему. Максимальный сброс техногенных радионуклидов в водохранилище отмечен в период проведения восстановительных и дезактивационных работ, направленных на устранение аварий на тепловых реакторах AMБ-100 и AMБ-200 первой очереди Белоярской АЭС.
Натрий-калиевый сплав находит применение, в основном, в ядерных энергетических установках малой мощности, в том числе космических ЯЭУ. При выборе теплоносителя таких ЯЭУ на первый план выступают не соображения стоимости, а вопросы безопасности, предэксплуатационного хранения, транспортировки и запуска заправленных теплоносителем установок. Обоснование использования определенного теплоносителя в космических ЯЭУ требует тщательного изучения их физико-химических свойств, вида и форм существующих в нем примесей, метода поддержания их качества и т.д. В связи с возникновением новых перспективных направлений применения расплавов щелочных металлов, например, в качестве рабочих тел в датчиках измерения давления, в высокотемпературных тепловых трубах и другом оборудовании, не позволяющем проводить периодическую очистку, требуется обоснование методов тщательной предварительной очистки в обеспечении длительного ресурса эксплуатации. Расплавленные щелочные металлы содержат разнообразные примеси, количество которых зависит от конкретных условий работы жидкометаллического контура. Известны такие источники примесей как примеси, поступающие в исходном металле, загружаемом в контур, примеси в инертных газах, оксидные пленки на внутренних поверхностях конструкционных материалов и газы, проникающие через стенки в процессе эксплуатации. В циркуляционных контурах происходит непрерывный отток компонентов сталей в холодную зону, что приводит к увеличению коррозии. Наиболее неблагоприятное влияние на коррозию конструкционных материалов оказывает кислород, имеющий высокую растворимость в щелочных металлах. В статье приведены данные о методах и средствах контроля примесей в контуре и способах очистки сплава от них.
Представлены результаты расчетно-теоретического исследования гетерогенной системы натрий-кислород-водород в натриевом теплоносителе при поступлении воды. Принимается, что концентрации компонентов в образующейся неравновесной системе перераспределяются в соответствии с законом действующих масс. Разработана методика расчета компонентного состава продуктов реакции при взаимодействии воды с натрием. Рассмотрен массоперенос продуктов реакции воды с натрием в натрии применительно к парогенератору натрий-вода. Получены данные по распределению концентраций компонентов реакции натрий-вода в натрии при разбавлении раствора. Подтверждена возможность проведения исследований пространственного распределения компонентов реакции натрий-вода в межтрубном пространстве парогенератора на изотермических моделях. Предложена модель растворения пузырьков водорода в натрии. Рассчитано изменение концентрации компонентов реакции натрий-вода в натрии по длине парогенератора с учетом образования и растворения пузырьков водорода. Рассмотрено влияние образования взвесей щелочи при взаимодействии воды с натрием на компонентный состав продуктов реакции. Получены значения приращения концентрации кислорода и водорода в натрии в зависимости от величины течи воды в натрий.
Приведены результаты исследований облученных быстрыми нейтронами сплавов V−Fe, полученные с использованием внутреннего трения и электросопротивления с целью выяснения влияния радиационно-стимулированных фазовых превращений, распада твердого раствора замещения и внедрения и радиационно-индуцированной сегрегации железа на вакансионное распухание при изохронных отжигах. Для изучения процессов, протекающих при изохронных отжигах в системе V−Fe, был выбран сплав V+0.65 ат.% Fe. Этот выбор обусловлен тем, что в процессе облучения из твердого раствора этого сплава выходит максимальное количество атомов Fe − 0.54 ат.% − по сравнению с другими сплавами, что составляет 83% по отношению к исходному составу. Особенностью восстановления электросопротивления сплава V+ 0.65 ат.% Fe является присутствие пиков скачкообразного изменения значения электросопротивления в области температур 400−1000°С.
В сплаве V+0.65 ат.% Fe, облученном нейтронами до 1.4 сна при температуре 400°С, при изохронных отжигах в области температур 100−1300°С через 100°С в течение одного часа при остаточном давлении не более 7×10−4 Па найдено, что во всем температурном интервале наблюдается миграция атомов Fe. При отжиге до 500°С наблюдаются распад значительной части радиационно-индуцированных сегрегаций и восстановление твердого раствора замещения; в интервале 500−600°С количество атомов Fe, находящихся в твердом растворе, снижается примерно на 50%, т.е. атомы Fe вновь сегрегируют на дефектах, стабильных в этой области температур. Подобные изменения сохраняются до 1000°С; в интервале температур отжига 1000−1300°С в твердом растворе находится около 0.30 ат.% Fe. Определено изменение электросопротивления облученного сплава, вызванного миграцией атомов Fe в матрице V.
Приводятся результаты сравнения расчетных данных с показаниями приборов контроля течи воды в натрий и гидродинамических параметров во втором натриевом контуре, наблюдавшихся во время инцидента с течью воды в натрий в модуле основного пароперегревателя (ОП) РУ БН-600 19 января 1982 г. Расчеты выполнялись с помощью двух кодов, предназначенных для анализа эффективности системы контроля межконтурной неплотности парогенератора при малых течах (SLEAK) и системы защиты парогенератора и второго контура от превышения давления при больших течах (LLEAK-3C 1.0). Использование двух расчетных кодов позволило смоделировать работу системы защиты парогенератора БН-600 при течи в парогенераторе с учетом ее эволюции.
Результаты расчетного моделирования реального инцидента на РУ БН-600 подтверждают адекватность физико-математических моделей, реализованных в кодах SLEAK и LLEAK-3C 1.0.
Статья посвящена обоснованию безопасности реактора СМ и выполнению программы экспериментальных исследований при пуске после изменения компоновки нейтронной ловушки при модернизации реактора. Рассмотрена концепция изменения центральной замедляющей полости активной зоны уникальной научной установки «Высокопоточный исследовательский реактор СМ-3», позволяющая повысить безопасность реактора и существенно расширить экспериментальный объем нейтронной ловушки. В экспериментах на критической сборке получены основные данные для обоснования безопасности модернизированного реактора. Для обоснования гидропрофилирования активной зоны были определены в активационных экспериментах коэффициенты неравномерности энерговыделения в типовых ячейках активной зоны.
По завершении модернизации выполнена поэтапная загрузка топлива в активную зону и проведены экспериментальные исследования на модернизированном реакторе для уточнения его нейтронно-физических характеристик, важных для безопасности. Выполнены работы по подготовке реактора и его систем к пуску после модернизации, проведена поэтапная загрузка ТВС в активную зону. Проведена проверка чувствительности и стабильности работы каналов контроля новой аппаратуры СУЗ. Расчетно-экспериментальными методами исследованы реактивностные параметры модернизированной активной зоны реактора СМ. Определены значения эффективностей, градуировочные характеристики органов СУЗ, запас реактивности и подкритичность активной зоны. Измерены температурный и мощностной эффекты реактивности, определено значение температурного эффекта реактивности и мощностного коэффициента реактивности, оценены величины стационарного отравления нуклидами 135Xe и 149Sm.
Приведены результаты экспериментов по исследованию осушки разрушенного ОЯТ ВВЭР после хранения во влажной среде с целью обоснования пожаровзрывобезопасности герметичных пеналов с осушенным ОЯТ при транспортировании, хранении и переработке. На этапе выдержки ОЯТ в растворе борной кислоты в экспериментах определены концентрации урана, плутония и удельная активность продуктов деления в растворе модельных пеналов с ОЯТ. Произведена термовакуумная сушка пеналов с ОЯТ и определены параметры осушки (температура, остаточное давление, скорость осушки), выход водорода и активности 85Kr в процессе осушки, а также аэрозольный выход радионуклидов на фильтры системы термовакуумной сушки ОЯТ. Исследовано накопление водорода в герметичном модельном пенале с осушенным ОЯТ вследствие радиолиза гидратированных продуктов коррозии оксидного ОЯТ, а также изучен выход газообразных продуктов деления (ГПД) в объем пенала. Произведена расчетная оценка количества гидратированных продуктов коррозии оксида урана после хранения в водной среде и определен их химический состав после проведения термовакуумной сушки. Полученные данные могут использоваться для обоснования пожаровзрывобезопасности технологии осушки разрушенного влажного ОЯТ и обращения с осушенным ОЯТ при транспортировке и хранении.
Представлены результаты исследований процессов гидродинамики и теплообмена в реакторах на быстрых нейтронах. Анализируются данные по турбулентному переносу импульса в пучках стержней. Показано, что интенсификация турбулентного переноса импульса в каналах пучков стержней обусловлена крупномасштабным турбулентным переносом импульса (вторичными токами). Объясняется интенсификация межканального турбулентного обмена в тесных решетках стержней. Получена зависимость для коэффициентов неподобия вынужденного проволочной навивкой межканального конвективного обмена массой, импульсом и энергией в пучках стержней. Изложены методики и результаты численного моделирования статистических характеристик теплогидравлики в тепловыделяющих сборках твэлов с использованием метода Монте-Карло, а также термомеханического анализа сборок твэлов в процессе кампании. Изложены результаты моделирования на водяной модели полей температуры и структуры движения теплоносителя в первом контуре реактора в различных режимах. Выявлена устойчивая температурная стратификация теплоносителя в периферийной зоне верхней камеры реактора над боковыми экранами. Показано, что процесс кипения щелочных жидких металлов в тепловыделяющих сборках твэлов характеризуется устойчивыми и пульсационными режимами, кризисом теплообмена. Показано согласие результатов экспериментального и численного моделирований. Построена картограмма режимов течения двухфазного потока щелочных жидких металлов в сборках твэлов. Анализируются влияние шероховатости поверхности твэлов на процесс кипения и теплоотдача при кипении жидких металлов. Показано длительное охлаждение тепловыделяющей сборки с «натриевой полостью» над активной зоной реактора в аварийных режимах с кипением жидких металлов. Сформулированы задачи дальнейших исследований.
Высокопоточный материаловедческий реактор СМ-3 с максимальной плотностью потока нейтронов до 5·1015 с–1× см–2 пущен в эксплуатацию в 1961 г. В период с июля 2019 г. по октябрь 2020 г. была проведена радикальная модернизация реактора с заменой всех внутрикорпусных устройств. Основная научно-техническая идея работ заключалась в кардинальном изменении компоновки активной зоны с двукратным увеличением объема нейтронной ловушки и количества экспериментальных ячеек со сверхвысокой плотностью потока нейтронов. Фактически модернизация представляла собой создание абсолютно новой конструкции активной зоны реактора СМ-3 со значительно улучшенными экспериментальными характеристиками, позволяющими расширить направления научных и прикладных исследований. Создана новая компоновка активной зоны на основе новых конструкций нейтронной ловушки, рабочих органов, исполнительных механизмов и новой аппаратуры системы управления и защиты реактора. Значительно улучшены экспериментальные характеристики реактора, количество ячеек в нейтронной ловушке возросло с 27-ми до 57-ми, возможность наработки трансплутониевых элементов и радионуклидов высокой удельной активности увеличилась в 1,8 раза Существенно улучшена надежность и безопасность эксплуатации, обеспечено продление срока службы реактора, по меньшей мере, до 2040 г. Описаны основные научно-технические решения, содержание и результаты работ по модернизации реактора СМ-3.
Представлены результаты экспериментального исследования теплофизических свойств водных растворов борной кислоты с добавкой гидроксида калия, используемого для соответствия требованиям водно-химического режима первого контура ВВЭР. Параметры были измерены при давлении P=0,1 МПа в диапазоне температур 25–90°C при следующих концентрациях H3BO3 в растворах: плотность 2,5–150 г/кг H2O, вязкость 2,5–100 г/кг H2O, поверхностное натяжение 2,5–150 г/кг H2O. Описаны основное экспериментальное оборудование и методика проведения исследований. На основании экспериментальных данных получены зависимости теплофизических свойств растворов от концентрации борной кислоты. Выявлены особенности изменения поверхностного натяжения H3BO3 при изменении концентрации и росте температуры раствора борной кислоты с корректирующей добавкой гидроксида калия.
Результаты проведенных исследований позволяют расширить диапазон известных свойств водных растворов борной кислоты и имеют важное прикладное значение для АЭС с реакторами ВВЭР нового поколения. Полученные экспериментальные данные могут быть использованы для уточнения результатов расчетов аварийных процессов в реакторной установке ВВЭР при работе комплекса пассивных систем безопасности, включающего в себя системы пассивного залива активной зоны, пассивного отвода тепла от парогенератора и гидроемкости третьей ступени.
Выполнено сценарное моделирование накопления америция и плутония-241 в модели двухкомпонентной ядерной энергетики России с тепловыми (ВВЭР) и быстрыми (БН) реакторами. При этом процесс переработки отработавшего ядерного топлива (ОЯТ) моделировался в двух вариантах: как приоритетная переработка ОЯТ реакторов ВВЭР или ОЯТ реакторов БН. Помимо накопления америция в системе без выжигания исследовалось накопление этого актинида с учетом его гомогенного выжигания в МОКС-топливе быстрых реакторов на уровне его равновесного содержания ~ 1%. Показано, что приоритетная переработка ОЯТ ВВЭР позволяет уменьшить накопление америция к концу века на ~8 тонн, при этом эффект достигается тем, что используется свежевыделенный плутоний с малой выдержкой, тем самым в быстром реакторе приоритетно уничтожается источник америция без непосредственного обращения с ним. Гомогенная добавка америция в топливо быстрых реакторов типа БН-1200 на уровне ~ 1% позволяет к 2070 г. остановить накопление америция в двухкомпонентной системе, стабилизировав его на уровне ~ 40 тонн в сценарии с приоритетной переработкой ОЯТ ВВЭР и ~ 50 тонн в сценарии с приоритетной переработкой ОЯТ БН.
Издательство
- Издательство
- ИАТЭ НИЯУ МИФИ
- Регион
- Россия, Москва
- Почтовый адрес
- 249039, Калужская область, городской округ «Город Обнинск», г. Обнинск, тер. Студгородок, д.1
- Юр. адрес
- 115409, г. Москва, Каширское шоссе, д. 31
- ФИО
- Панов Алексей Валерьевич (И.о. директора)
- E-mail адрес
- info@iate.obninsk.ru
- Контактный телефон
- +7 (748) 439369_