ISSN 2305-9052 · EISSN 2410-7034
Языки: ru · en

Статья: ПОДХОД К КЛАССИФИКАЦИИ МНОГОМОДАЛЬНЫХ ДАННЫХ О ЗАБОЛЕВАНИЯХ ПНЕВМОНИЕЙ НА ОСНОВЕ ПРОМЕЖУТОЧНОГО СЛИЯНИЯ (2023)

Читать онлайн

В медицинской практике первичную диагностику заболеваний следует проводить быстро и по возможности автоматически. Обработка многомодальных данных в медицине стала повсеместно распространеннымметодом классификации, прогнозирования и обнаружения заболеваний. Пневмония - одно из наиболее распространенных заболеваний легких. В нашем исследовании для выявления пневмонии мы использовалирентгенограммы органов грудной клетки в качестве первой модальности и результаты лабораторных исследований пациента в качестве второй модальности. Архитектура многомодальной модели глубокого обучениябыла основана на промежуточном слиянии. Модель обучалась на сбалансированных и несбалансированныхданных, когда наличие пневмонии определялось в 50% и 9% от общего числа случаев соответственно. Дляболее объективной оценки результатов мы сравнили производительность нашей модели с несколькими другими моделями с открытым исходным кодом на наших данных. Эксперименты демонстрируют высокуюэффективность предложенной модели выявления пневмонии по двум модальностям даже в случаях несбалансированных классов (до 96.6%) по сравнению с результатами одномодальных моделей (до 93.5%). Мысделали несколько интегральных оценок производительности предлагаемой модели, чтобы охватить и исследовать все аспекты многомодальных данных и особенностей архитектуры. Были показатели точности,ROC AUC, PR AUC, показателя F1 и коэффициента корреляции Мэтьюса. Используя различные метрики, мы доказали возможность и целесообразность использования предложенной модели с целью правильнойклассификации заболевания. Эксперименты показали, что производительность модели, обученной на несбалансированных данных, даже немного выше, чем у других рассмотренных моделей.

Автор (ы): Иванова Ольга Николаевна, Мелехин А. В., Иванова Елена Владимировна, Кумар Сэчин, Цымблер Михаил Леонидович
Журнал: ВЕСТНИК ЮЖНО-УРАЛЬСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И ИНФОРМАТИКА

Идентификаторы и классификаторы

УДК
004.891.3. Диагностические экспертные системы
eLIBRARY ID
54647001
Для цитирования:
ИВАНОВА О. Н., МЕЛЕХИН А. В., ИВАНОВА Е. В., КУМАР С., ЦЫМБЛЕР М. Л. ПОДХОД К КЛАССИФИКАЦИИ МНОГОМОДАЛЬНЫХ ДАННЫХ О ЗАБОЛЕВАНИЯХ ПНЕВМОНИЕЙ НА ОСНОВЕ ПРОМЕЖУТОЧНОГО СЛИЯНИЯ // ВЕСТНИК ЮЖНО-УРАЛЬСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И ИНФОРМАТИКА. 2023. Т. 12 № 3
Текстовый фрагмент статьи