С развитием аппаратных технологий высококачественные рентгеновские снимки стали доступны для диагностики заболеваний легких с помощью специалистов-радиологов. Однако процесс диагностики занимает много времени и зависит от наличия в медицинском учреждении специалистов соответствующего профиля. В то же время информация о пациенте может включать не только рентгеновские снимки грудной клетки разного качества, а также результаты медицинских анализов, записи и предписания врача, сведения о приеме лекарств и другие. В данном исследовании предложена модель классификации легочных заболеваний на основе мультимодальных данных о клинических исследованиях пациентов и рентгенографических изображений. При подготовке данных использованы различные методы генерации искусственных образцов как для изображений, так и для табличных данных о результатах лабораторных исследований. Предложен метод установления соответствия для сгенерированных образцов между модальностями. Предложенная мультимодальная модель имеет архитектуру позднего слияния. Проведены эксперименты на наборах данных с одной и двумя модальностями. Предложенная модель показала точность на 5.5% выше, чем модели, основанные на одной модальности (91.3% против 86.11% на наборе данных из 1 156 пациентов).
Идентификаторы и классификаторы
- eLIBRARY ID
- 65312693