В статье на основе анализа боевых свойств и формирования предварительного перечня представительных тактико-технических характеристик активных экзоскелетов военного назначения предложен методический подход к их аналитической оценке по критерию «военно-технический уровень - стоимость» в целях реализации мероприятий программно-целевого планирования развития элементов боевой экипировки военнослужащих.
Идентификаторы и классификаторы
В настоящее время в развитых в военнотехническом отношении странах особое значение придается развитию экипировки военнослужащих как одному из значимых факторов, напрямую влияющих на боевую эффективность и живучесть личного состава при выполнении им традиционных или специальных боевых задач. При этом магистральным направлением дальнейшего совершенствования и качественного обновления боевой экипировки военнослужащих (БЭВ) является интеграция в ее состав экзоскелетных конструкций (экзоскелетов) военного назначения [1, 2].
С их помощью предлагается повысить уровень защищенности, увеличить боезапас, расширить номенклатуру применяемого вооружения и средств обеспечения, нивелируя прирост массы носимого комплекта БЭВ. Согласно [3] под экзоскелетом военного назначения подразумевается разновидность роботизированного средства военного назначения, предназначенная для увеличения силы мышц и/или расширения амплитуды движений оператора за счет внешнего каркаса и приводящих элементов.
Список литературы
- Пономарев Д.А. Экзоскелеты - новый и перспективный вид военного снаряжения / Д.А. Пономарев, А.Г. Королева, И.И. Шамаева // XXXV Всероссийская науч.-практ. конф. “Дискуссии в области гуманитарных, естественно-научных аспектов современности”: материалы. - Ростов-на-Дону. - 2022. - С. 129-131. - Текст: непосредственный. EDN: SGFCOV
- Костанян К.Б. Экзоскелеты в боевой экипировке / К.Б. Костанян, А.В. Воробьев, М.Р. Чеченев // III науч.-техн. конф. “Энергетика. Технологии, аппараты и машины жизнеобеспечения”: сборник статей. - ВИТ “ЭРА”. - 2021. - С. 424-430. - Текст: непосредственный. EDN: ZAPSBJ
- Робототехнические комплексы военного назначения. Термины и определения. Классификация. Основные положения: методические материалы - М.: ФГБУ “ГНИИЦ РТ” Минобороны России. - 2016. - С. 27. - Текст: непосредственный.
- Экзоскелеты военного назначения. Термины и определения. Классификация. Основные положения: методические материалы. - М.: ФГБУ “46 ЦНИИ” Минобороны России. - 2021. - С. 24. - Текст: непосредственный.
- Основные требования к активным штурмовым экзоскелетам, предназначенным для включения в боевую экипировку военнослужащих / Е.А. Антохин [и др.] // Робототехника и техническая кибернетика. - 2021. - Т.9. - № 1. - С. 17-25. - Текст: непосредственный. EDN: MQZPFQ
- Угревский С.В. Требования к экзоскелетам военного назначения / С.В. Угревский, А.Н. Чичков // Вопросы оборонной техники. Серия 16: Технические средства противодействия терроризму. - 2014. - № 11-12. - С. 114-120. - Текст: непосредственный. EDN: TEBVHH
- Новак К.В. Метод исследования потенциальной эффективности применения экзоскелетов в боевой экипировке военнослужащих / К.В. Новак, Ю.С. Винокурова // Вопросы безопасности. - 2016. - № 5. - С. 1-10. - Текст: непосредственный. EDN: XBAQPJ
- Новак К.В. Перспективы создания отечественных экзоскелетных комплексов военного назначения // Тематический сборник статей по вопросам проведения испытаний робототехнических комплексов военного и специального назначения. - 2018. - С. 124 - 136. - Текст: непосредственный.
- Методический подход к сравнительной оценке активных экзоскелетных конструкций военного назначения / Е.А. Антохин [и др.] // V Военно-науч. конф. “Роботизация ВС РФ”: сборник трудов. - 2020. - С. 143-152. - Текст: непосредственный. EDN: EICMPM
-
Захаров А.В. Методический подход к оценке активных экзоскелетов военного назначения / А.В. Захаров, Е.А. Антохин, Л.Л. Воронин // Вооружение и экономика. - 2021. - № 4(58). - С. 37-46. - Текст: непосредственный. EDN: ADJBFI
-
Буренок В.М. Методология обоснования перспектив развития средств вооруженной борьбы общего назначения / В.М. Буренок, Р.Н. Погребняк, А.П. Скотников. - М.: Машиностроение, 2010. - 368 с. - Текст: непосредственный. EDN: RAYDJV
-
Хрипунов С.П. Аналитическая оценка образцов робототехнических комплексов военного назначения, разработанных в инициативном порядке / С.П. Хрипунов, И.В. Благодарящев // Информационно-измерительные и управляющие системы. - 2015. - № 5. - С. 41-48. - Текст: непосредственный. EDN: TYMSXN
-
Методология программно-целевого планирования развития системы вооружения на современном этапе / Под ред. проф. В.М. Буренка. - М.: Издательская группа "Граница", 2013. - 520 с. - Текст: непосредственный.
-
Бонин А.С. Количественно-качественное соотношение сил авиационных группировок сторон: методология, методики, расчетные условия // МО РФ. - 2001. - Текст: непосредственный.
Выпуск
Другие статьи выпуска
Статья посвящена особенностям методов синтеза управления (супервизора) для системы группового управления мобильными роботами. Верхние уровни системы группового управления рассматриваются как дискретно-событийная система. Представлены некоторые известные методы синтеза супервизора для дискретно-событийной системы, приведены оценки их вычислительной сложности. Для применения при проектировании дискретно-событийной системы группового управления выбран наилучший по критерию вычислительной сложности метод. Указаны ограничения выбранного метода, связанные с управлением независимыми действиями роботов при выполнении группового действия. Предложены модификация метода и расширение синтаксиса описания требуемого поведения (спецификации), которые позволяют снять указанные ограничения без увеличения вычислительной сложности. Применение модифицированного метода продемонстрировано на примере синтеза супервизора для группового действия выхода на рубеж с последующим тушением очага пожара тремя роботами.
Данная работа посвящена вопросам распределения задач в группах беспилотных летательных аппаратов (БПЛА) при условиях значительного превышения количества задач над количеством агентов. Основными задачами, решаемыми БПЛА, являются: обзор и разведка территорий, обнаружение опасных объектов или мест возникновения чрезвычайных ситуаций, поиск пострадавших и т.п. Эффективность решения перечисленных выше задач достигается путем одновременного использования группы БПЛА, элементы (агенты) которой могут осуществлять параллельное выполнение задач по осмотру и сканированию различных областей пространства. В статье предложен итеративный метод распределения задач в группе БПЛА при значительном превышении количества задач над количеством агентов (5-20 раз). Предлагаемый метод для гетерогенных групп БПЛА базируется на двухэтапной процедуре распределения агентов разных специализаций по кластерам задач с учетом функции ценности агента. На первом этапе производится распределение базовой части агентов, оставшиеся агенты на втором этапе распределяются с целью усреднения пройденного пути каждым агентом. Выполнение задач внутри кластера реализуется методом имитации отжига. Для оценки эффективности вариантов метода произведено сравнение с жадным алгоритмом распределения задач и алгоритмом коллективного распределения целей. Рассматриваемые аналоги являются широко распространенным, универсальными и имеют высокую сходимость решения. Экспериментальные исследования проведены путем компьютерного моделирования, где проведено 2000 экспериментов при различном изменении количества агентов группы и генерации карты задач. Результаты показали высокую эффективность метода распределения задач в части снижения пройденного пути агентами группы БПЛА при выполнении задач в сравнении с аналогами. Эффективность пройденного пути агентами составляет до 28% в зависимости от количества агентов и задач в кластере, что является научным приращением полученного результата исследования.
Развитие технологий робототехники требует повышение уровня научно-технических разработок и создание профильного задела, а также формирования системы подготовки высококвалифицированных специалистов. Одним из способов оценки достигнутого уровня разработок и квалификации инженерных команд является проведение соревнований различного уровня. В статье представлен обзор различных мероприятий по соревновательной робототехнике. В третьей части рассмотрены соревнования в водной среде. Соревнования структурированы по формату проведения, среде функционирования и возрасту участников. Сделаны выводы о перспективах различных мероприятий соревновательной робототехники, а также актуальности некоторых из них. Представлены взаимосвязи достигаемых компетенций при участии в соревнованиях по различным направлениям, а также делается вывод о необходимости проведения профориентационной работы.
Представлен лунный манипуляторный комплекс (ЛМК), разработанный для посадочной миссии «Луна-25» в составе комплекса научной аппаратуры (КНА). В ходе наземных испытаний прежде всего отрабатывалась кинематика перемещений ЛМК, в том виде как это будет реализовано на Луне, и взаимодействие различных приборов: ЛМК, лазерный ионизационный масс-спектрометр (ЛАЗМА-ЛР), стационарная телевизионная система (СТС-Л) и ИК-спектрометр и стереокамеры (ЛИС-ТВ-РПМ). Совместная работа этой группы приборов должна обеспечить точное наведение манипулятора на выбранный участок поверхности Луны с последующим взятием пробы, безопасное транспортирование взятого грунта в приёмное отверстие масс-спектрометра и наведение ИК-спектрометра на различные объекты на поверхности Луны. Также исследовались возможности ЛМК копать и забирать пробы грунта в крио-вакуумной камере вертикального типа с использованием имитатора лунного реголита, замороженного до криогенных температур в вакууме с добавлением водяного льда.
Рассматриваются сложные робототехнические системы, их свойства, признаки и взаимодействия, предложено определение сложной системы на основе 5-ти свойств: открытости, неизоморфной изменчивости трех видов (структурной, пространственной и информационной), двойного кода, агрегирования событий и нарушения физических симметрий. Влияние нарушений физических симметрий на определение оптимальных траекторий управления сказывается в парадигме подхода к исследованиям сложных робототехнических систем, которые не формализуются как математические объекты. Сформулированы основные понятия, постулаты и гипотезы. Описаны идеальные конструкции изменчивости сложных систем; энергетических причинных множеств; энергии; событий, причин, следствий и эволюций; пространства-времени, квантов и вакуумов; взаимодействия индивидов; операторов физических взаимодействий, агрегированных событий, текстов и вложений слов. Предложены и кратко описаны три основные модели для исследования сложных систем - модель физических взаи-модействий, нейролингвистическая модель и модель управления при неполной совместимости. Приведена структура ядра платформы физического имитационного моделирования для исследований сложных систем. Описаны три типа квантов моделирования по пространству-времени - минимальный, семантический и эволюционный. Дана иллюстрация результатов применения предложенного подхода к исследованию действий сложных систем. Отмечено, что образующаяся математическая структура проявляет свойства фрактала. Выделены типовые траектории эволюции - «гомеостат»; «затухание действий»; «инвариант»; «катастрофа»; «окно возможностей». Приведен ряд принципов исследований сложных систем методологического и методического характера. Даны рекомендации по области применения предложенного подхода.
В работе рассмотрена содержательная и формальная постановки проблемы синтеза системы управления группой наземных робототехнических комплексов (РТК). Проведена декомпозиция данной проблемы на ряд частных научных задач: задачу обоснования структуры системы управления, разработку метода определения эмерджентности системы управления и разработку метода оценки качества системы управления и эффективности её применения. Показано, что отличительными чертами данной проблемы являются: стохастический характер показателя эффективности - вероятности достижения цели операции, неопределенность условий применения группы РТК и большой размер пространства проектирования системы управления. Проблема роста пространства проектирования продемонстрирована методическим примером. Для снижения трудоёмкости анализа размера пространства проектирования автором настоящей статьи предлагается использование декомпозиционного подхода, который заключается в обосновании «опорного» (базисного) варианта структуры системы управления и начальной её декомпозиции. Новизна в реализации подхода заключается в совместном рассмотрении «метода группового управления» и принципа иерархической структуризации системы группового управления. Такой подход позволяет обоснованно получить базисные решения по структуре системы управления, что, в свою очередь, позволяет осуществлять в дальнейшем параметрический синтез систем управления и проводить сравнительную оценку решений по критерию «качество-стоимость».
Перспективным направлением развития современных робототехнических систем является повышение автономности роботов. Среди различных видов автономности ситуационная автономность [2] представляет наиболее значимый вызов для разработчиков. Гибкое и устойчивое автономное функционирование робототехнических комплексов (РТК) в незнакомых, ранее не встречавшихся ситуациях обеспечивается реализацией процедур адаптации, а в пределе - самоорганизации (самообучения) в системах управления РТК. Особенно остро потребность в адаптивных системах управления проявляется при автономных действиях в боевой обстановке, где среды являются высокодинамичными, а причинами неопределенностей ситуаций могут быть непредсказуемость поведения противника, несовершенство бортовых информационно-измерительных средств и алгоритмов, сложная помеховая обстановка и др. Ситуация усугубляется групповым применением роботов, при котором человек-оператор (или их группа) в силу ограниченных психофизиологических возможностей не в состоянии координировать работу множества роботов одновременно [3]. В таких условиях РТК может оказаться бесполезным средством вооруженной борьбы, не способным частично или в полном объеме выполнить поставленную боевую задачу. Приведенные обстоятельства вызывают настоятельную необходимость создания адаптивных (самообучающихся) систем управления РТК, способных формировать рациональные, а в пределе - оптимальные с точки зрения успешного выполнения поставленной боевой задачи управленческие решения в неопределенных боевых ситуациях. В статье рассматривается один из возможных подходов к созданию самообучающихся, адаптивных в широком смысле слова систем управления РТК на основе технологий вывода решений по аналогии.
В настоящей статье представлены результаты экспериментального и расчетного моделирования движения рыбоподобного подводного робота. Экспериментальная 3D модель сконструирована по фотографиям тихоокеанского голубого тунца. Данная модель позволяет исследовать биоморфное плавание с различными параметрами движения, а именно: амплитуда и частота взмахов задается управляющим сигналом сервопривода, угол между хвостовым плавником и упругой пластиной задается количеством и жесткостью пружин в шарнире. Расчетная методика предполагает совместное решение уравнений динамики робота и уравнений гидродинамики жидкости, обтекающей его. Для данной задачи был разработан оригинальный алгоритм деформации сетки, позволяющий вести гидродинамические расчеты вблизи хвоста модели, совершающего поперечные колебания. Использование технологии деформируемых сеток позволяет максимально точно воспроизводить форму колебаний хвоста. К тому же, расчетная схема обладает свойством консервативности, что позволяет получать высокое качество расчета, подтвержденное сравнением с экспериментальными данными.
Динамичное развитие информационных технологий, и в частности, технологий искусственного интеллекта обуславливает растущую актуальность исследования возможностей их внедрения при создании перспективных образцов вооружения и военной техники. Проанализированы сущностные определения термина «искусственный интеллект». Рассмотрены типовые подходы к повышению эффективности применения вооружения и военной техники, на примере военной автомобильной техники, за счет внедрения современных технологий искусственного интеллекта. С использованием экспертных оценок сформулирован перечень основных функций ассистента водителя, при реализации которых целесообразно применение алгоритмов искусственного интеллекта.
В статье рассматривается конструкция робота Delta, входящего в состав мультироботизированной системы для аликвотирования биологической жидкости. Целью статьи является получение динамической модели манипулятора Delta при помощи 3D-моделирования, которая позволит изучать кинематические и динамические характеристики манипулятора для заданных параметров. Для моделирования используется система автоматизированного проектирования (САПР). В статье представлен аналитический расчет кинематических и динамических параметров манипулятора Delta в структуре РС, представлено решение обратной задачи. Описан процесс создания цифровой расчетной модели в системе NX Nasrtan. Предварительно выполненный расчет кинематических и динамических параметров, позволил задать параметры в системе NX Nastran для обеспечения вращения приводных валов двигателей в соответствии с заданной траекторией выходного звена. Для всех звеньев манипулятора определены центр масс и назначен материал. Проведена симуляция движения и получены зависимости изменения скоростей, ускорений и перемещений звеньев манипулятора для реализации требуемой траектории подвижной платформы. Выполнены расчет позволяет построить траекторию движения выходного звена с заданной скоростью, задавая поворот приводных звеньев расчетной модели с учетом сил инерции.
Развитие технологий робототехники требует повышение уровня научно-технических разработок и создание профильного задела, а также формирования системы подготовки высококвалифицированных специалистов. Одним из способов оценки достигнутого уровня разработок и квалификации специалистов и инженерных команд является проведение соревнований различного уровня. В статье продолжен обзор различных мероприятий по соревновательной робототехнике в части состязаний специальных и спасательных роботов в наземной и подземной средах. Соревнования структурированы по формату, типу проведения, среде функционирования и возрасту участников. Сделаны выводы о перспективах различных мероприятий соревновательной робототехники, а также актуальности некоторых из них.
Издательство
- Издательство
- ЦНИИ РТК
- Регион
- Россия, Санкт-Петербург
- Почтовый адрес
- 194064, г Санкт-Петербург, Калининский р-н, Тихорецкий пр-кт, д 21
- Юр. адрес
- 194064, г Санкт-Петербург, Калининский р-н, Тихорецкий пр-кт, д 21
- ФИО
- Лопота Александр Витальевич (ДИРЕКТОР-ГЛАВНЫЙ КОНСТРУКТОР)
- E-mail адрес
- rtc@rtc.ru
- Контактный телефон
- +7 (812) 5520110
- Сайт
- https://rtc.ru/