В интересах изучения проблемы грубых посадок и выкатывания самолетов с взлетно-посадочной полосы (ВПП) была разработана анкета для пилотов, в которой содержалось 22 вопроса, имеющих отношение к рассматриваемой проблеме. Основной акцент в анкете был сделан на выкатывании самолета за боковую кромку ВПП. Спектр вопросов охватывал разные аспекты проблемы, в том числе восприятие и сравнительную оценку пилотами различных факторов риска, личный опыт выполнения посадок с предпосылками к выкатыванию, принятие решения об уходе на второй круг, отношение к политике авиакомпаний в части оценки качества посадки, достоверность сообщаемой экипажу информации о погоде и состоянии ВПП, качество тренажерной подготовки к полетам в условиях бокового ветра и скользкой ВПП, современные бортовые системы предотвращения выкатывания самолета с ВПП и др. Были опрошены более 50 пилотов гражданской авиации разного возраста, с разным стажем и опытом работы, командиры воздушных судов и вторые пилоты. Анкетирование проводилось заочно и анонимно. Обработка анкет включала в себя детальный анализ ответов на каждый из вопросов анкеты. При отсутствии ответа на вопрос или обоснованном сомнении в его корректности анкета исключалась из рассмотрения. Результаты обработки анкет по всей выборке и по отдельным группам (молодые/опытные, командиры / вторые пилоты, турбовинтовые/турбореактивные самолеты) представлены и проанализированы в данной работе.
Идентификаторы и классификаторы
Список литературы
- Van Es G.W.H. A study of runway excursions from a European perspective [Электронный ресурс] // SKYbrary. Report NLR-CR-2010-259, May 2010. 70 p. URL: https://skybrary.aero/sites/default/files/bookshelf/2069.pdf (дата обращения: 29.04.2023).
- Jenkins M., Aaron R.F. Reducing runway landing overruns [Электронный ресурс] // Boeing Aero Magazine. March 2012. URL: https://www.boeing.com/commercial/aeromagazine/articles/2012_q3/3 (дата обращения: 29.04.2023).
- Окань Д.С. Выкатывания воздушных судов. Риски, угрозы и рекомендации по предотвращению [Электронный ресурс] // LIVEJOURNAL. Апрель 2012. URL: https://denokan.livejournal.com/20427.html (дата обращения: 29.04.2023).
- Шаров В.Д. Методика оценки вероятности выкатывания воздушных судов за пределы ВПП при посадке // Научный Вестник МГТУ ГА. 2007. № 122. С. 61-66.
- Шаров В.Д. Оценка влияния среды на безопасность полетов // Научный Вестник МГТУ ГА. 2013. № 192. С. 47-54.
- Шаров В.Д. Общие подходы к идентификации и оценке риска авиационного происшествия по группе факторов «Среда» // Проблемы безопасности полетов. 2007. № 2. С. 21-29.
- Шаров В.Д. Прогнозирование и предотвращение выкатываний самолета за пределы взлетно-посадочной полосы. Германия: LAP - Lambert Academic Publishing, 2013. 112 с.
- Шаров В.Д. Метод оценки риска выкатывания за пределы ВПП при посадке на аэродромах Канады и его применение в авиакомпании «Волга-Днепр» // Труды общества расследователей авиационных происшествий. 2008. № 20. С. 290-295.
- Гузий А.Г. Система управления безопасностью полетов эксплуатанта воздушных судов. Курс обучения персонала авиакомпании / А.Г. Гузий, А.М. Лушкин, А.В. Мишин, Д.А. Ширяев. М.: ИД Академии Жуковского, 2021. 182 с.
- Гузий А.Г., Лушкин А.М., Майорова Ю.А. Теория и практика экспертного анализа в системах управления безопасностью полетов: монография. М.: ИД Академии Жуковского, 2015. 127 с.
- Мозоляко А.В., Акимов А.Н., Воробьев В.В. Проблемы предотвращения выкатывания гражданских воздушных судов на этапе пробега по ВПП // Научный Вестник МГТУ ГА. 2014. № 204. С. 74-77.
- Бородкин С.Ф. Современные методы предотвращения выкатываний воздушных судов за пределы взлетно-посадочной полосы / С.Ф. Бородкин, А.И. Волынчук, Ш.Ф. Ганцев, М.А. Киселев, И.А. Носатенко // Научный Вестник МГТУ ГА. 2022. Т. 25, № 2. С. 8-19. https://doi.org/10.26467/2079-0619-2022-25-2-8-19
- Варюхина Е.В. Анализ факторов риска, сопутствующих выкатываниям самолета с ВПП, и методика оценки сложности посадки / Е.В. Варюхина, В.В. Лучинин, А.А. Павлов, В.В. Стрелков // Гидроавиасалон-2016: сборник докладов XI научной конференции по гидроавиации. Геленджик, 23-24 сентября 2016 г. М.: ЦАГИ им. проф. Н.Е. Жуковского, 2016. Т. 1. С. 184-189.
- Стрелков В.В., Хайруллин Н.Г., Бутырин О.А. Применение методов статистического анализа для решения задачи оценки влияния различных факторов на риск выкатывания самолета со взлетно-посадочной полосы при посадке // Труды МФТИ. 2019. Т. 11, № 3. С. 133-145.
- Ганяк О.И., Стрелков В.В. Исследования в интересах разработки перспективных бортовых систем интеллектуальной поддержки экипажа на посадке // Технологическое развитие авиастроения: глобальные тенденции и национальные интересы России: труды первой научно-практической конференции. Москва, 25 февраля 2021 г. М.: ЦАГИ им. проф. Н.Е. Жуковского, 2021. С. 150-159.
Выпуск
Другие статьи выпуска
В последнее время производители авиадвигателей проявляют повышенный интерес к разработке гибридных силовых установок (ГСУ), представляющих собой комбинацию газотурбинных двигателей (ГТД) с электродвигателями-генераторами. Использование ГСУ позволяет повысить топливную эффективность самолета, а также создать новые конфигурации с улучшенными аэродинамическими и тяговыми характеристиками. Повышение топливной эффективности достигается в результате оптимизации режима работы силовой установки под требования крейсерского полета с компенсацией недостающей мощности при взлете и уходе на второй круг за счет подключения электродвигателей с питанием от аккумуляторов. Создание новых конфигураций с улучшенными характеристиками может быть обеспечено благодаря синергетическому эффекту взаимодействия воздушных винтов с планером самолета. Успешные летные испытания опытных образцов ГСУ в компоновках легких самолетов позволяют рассчитывать на их возможное применение в будущем в проектах новых винтовых самолетов. Потенциальные преимущества применения новых силовых установок на самолетах местных авиалиний могут привести как к сокращению расхода топлива, так и к снижению выбросов углерода. Также возможно кратковременное поддержание безопасного режима полета в случае отказа одного двигателя при использовании нескольких источников энергии. Энергия, вырабатываемая электрическим генератором, подключенным к работающему двигателю, может использоваться как для привода электродвигателей концевых воздушных винтов, так и для вращения движителя отказавшего двигателя. В работе представлены результаты исследований влияния отказа критического двигателя на аэродинамические характеристики модели легкого транспортного самолета, полученные как при отсутствии, так и при наличии электрической передачи между работающим и отказавшим двигателем. Экспериментальные исследования проведены в малоскоростной аэродинамической трубе Т-102 ЦАГИ. Моделирование работы электрической трансмиссии проведено путем установки режима работы двух имитаторов силовой установки, соответствующего половинному значению коэффициента нагрузки воздушного винта Boодного двигателя на взлетном режиме.
В статье изложены результаты работ в области создания натурного стенда для исследований в области определения структуры и параметров системы управления беспилотными летательными аппаратами коптерного типа с силовой установкой, имеющей в своем составе электродвигатели с винтами фиксированного шага. Представлены особенности конструктивной реализации стенда с учетом перспектив его развития в части количества степеней свободы (каналов тангажа, крена и рыскания). Описан реализованный принцип интеграции Simulink – модели объекта управления, контроллера на базе платформы Arduino, гироскопа-акселерометра для организации обратных связей в интересах формирования алгоритмов автоматического и позиционного (ручного) управления углом тангажа, ручного управления оборотами электродвигателя. Представлен анализ результатов натурного моделирования в части качества переходных процессов и затрат электроэнергии для различных вариантов настройки PID-регулятора, обеспечивающего формирование сигнала оборотов электродвигателя. Сделан вывод о целесообразности создания и использования экспериментальной базы для обоснования применения адаптивных алгоритмов управления беспилотными летательными аппаратами коптерного типа с элементами искусственного интеллекта в интересах обеспечения требуемых пилотажных характеристик в широком диапазоне свойств объектов управления.
Проблемы развития транспортного коридора «Север – Юг» напрямую взаимосвязаны с интеграцией инфраструктуры регионов стран – участниц данного проекта. Значение коридора в настоящее время затрагивает не только экономическую сферу, но также и сферу геополитики всего мирового сообщества, поскольку затрагиваются вопросы балансировки сил в мировой экономике. По итогам исследования статистических данных из открытых источников, анализа обширной периодической литературы обоснованы сильные и слабые стороны мультимодального транспортного коридора (МТК) «Север – Юг» и определены перспективные пути реализации и повышения его эффективности. В качестве факторов, которые препятствуют активной реализации проекта, выделены политическое давление на ряд стран-участниц и асимметрия интересов (наиболее заинтересованными участниками являются Иран и Россия, другие стороны от участия в проекте могут иметь негативные геополитические и экономические последствия). Большие проблемы имеются в уровне развития инфраструктуры и недостаточной степени гармонизации институциональных условий, в рамках которых функционирует транспортный коридор. В то же время безусловными преимуществами транспортного коридора «Север – Юг» являются снижение зависимости от других транспортных путей, в том числе проходящих через конкурирующие страны, повышение национальной безопасности и суверенитета России, укрепление евразийской интеграции, углубление внешнеполитических связей со странами Азии и Африки. В целях максимально возможного использования потенциала МТК «Север – Юг» и повышения его конкурентоспособности в сравнении с другими транспортными узлами предложены следующие пути: 1) единовременное решение комплекса задач: модернизации инфраструктуры, в первую очередь портовой – в России, железнодорожной – в Иране; полноценная цифровизация транспортно-логистической сферы во всех странах-участницах; гармонизация институциональных условий реализации проекта в области законодательства, таможенных процедур, бизнес-процессов, управления; 2) более активное использование режимов свободных экономических зон и особых экономических зон; 3) формирование специальной наднациональной организационной структуры, которая будет заниматься непосредственно развитием МТК «Север – Юг».
Целью системы управления производственной безопасностью является выявление факторов опасностей и разработка совокупности методов для предупреждения травматизма на авиапредприятии, профессиональной заболеваемости, материальных затрат в случае ущерба имуществу и окружающей среде. В ходе анализа структуры профессиональной патологии в зависимости от воздействующих факторов производственной среды и трудового процесса за период 2013–2022 годов показано, что процент заболеваний, связанных с воздействием производственных физических факторов, за данный период остается на прежнем уровне. Данный факт в свою очередь подтверждает актуальность области выбранного исследования. Анализ и выявление складывающейся производственной обстановки необходим для проведения оценки влияния неблагоприятных производственных факторов. В данном исследовании реализован новый подход к построению модели для системы управления производственной безопасностью. Математическое моделирование позволяет более глубоко понять природу некоторых явлений и выявить ту информацию, которая отражает реальную ситуацию и является фактором, стимулирующим развитие новых научных проблем и способов их решения, а также основой для принятия конкретных решений при реализации определенных проектов. Успешное осуществление стратегий в целях создания системы производственной безопасности для гибкой структуры мониторинга и управления неотъемлемо зависит от того, насколько эффективна ее функциональная структура, данное положение объясняется фундаментальностью задач, которые решаются на этапе управления. В статье рассмотрены теоретические положения, касающиеся математического моделирования. При создании модели был использован аппарат абстрактной алгебры – теория множеств. Разработанный в ходе исследования подход дает возможность ввести модель системы управления производственной безопасностью в деятельность авиапредприятий.
Уменьшение стоимости жизненного цикла изделия авиационной техники – задача, решаемая на стадии проектирования либо влекущая за собой значительные доработки конструкции. Предварительный подогрев турбины газотурбинного двигателя (ГТД) позволяет уменьшить термонапряженность рабочих лопаток (РЛ) при запуске двигателя без внесения конструктивных изменений, а лишь за счет внедрения технологии подогрева двигателя в эксплуатационный процесс. Значения термических напряжений на РЛ турбины высокого давления (ТВД) турбореактивного двухконтурного двигателя (ТРДД) с применением подогрева и без него позволяют определить изменение суммарной степени повреждаемости РЛ ТВД. В концепции предварительного подогрева ГТД перед запуском для составления технологии подогрева необходимо знать время, за которое РЛ нагреется до необходимой температуры. Таким образом, задача исследования, излагаемого в статье, заключается в эмпирическом определении времени прогрева РЛ ТВД при помощи термопар и пирометров на натурном объекте в зависимости от способов подачи воздуха для подогрева и вращения ротора. Отличительной особенностью проделанной работы является применение эмпирического подхода в определении времени прогрева РЛ ТВД для оценки целесообразности применения самой технологии предварительного подогрева ГТД перед запуском и выбора наиболее эффективного способа прогрева по критерию времени. Рассмотрены несколько способов подогрева двигателя перед запуском с применением различного набора оборудования и способа подачи горячего воздуха на турбину. Результаты измерений времени прогрева РЛ позволили установить способ прогрева с минимальными затратами времени перед запуском двигателя.
Издательство
- Издательство
- Научно-техническая библиотека МГТУ ГА
- Регион
- Россия, Москва
- Почтовый адрес
- Кронштадтский бул., 20
- Юр. адрес
- Кронштадтский бул., 20
- ФИО
- Елисеев Борис Петрович (Руководитель)
- E-mail адрес
- press@mstuca.aero
- Контактный телефон
- +7 (916) 2376484
- Сайт
- https://mstuca.ru