С момента появления концепции «зеленой химии», введенной в химический лексикон в начале 90-х годов ХХ в., ее основные положения непрерывно эволюционировали и развивались.
На данный момент насчитывается 10 – 12 основных «краеугольных камней», на которых должен быть построен идеальный химический процесс. Данный обзор анализирует накопленный опыт и достижения на пути к созданию химических продуктов и процессов без использования или образования вредных веществ.
Обзор представляет точку зрения ведущих российских специалистов, работающих в
различных областях данного направления, включая гомогенный и гетерогенный
катализ, тонкий и промышленный органический синтез, электрохимию, полимерную
химию, химию на основе биовозобновляемого сырья, химию энергоемких соединений
и материалов.
Представлена также новая разработка российских авторов в области количественной оценки экологичности процессов. Библиография — 1761 ссылок.
Идентификаторы и классификаторы
Термин «зеленая химия», введенный в химический лексикон в начале 90-х годов ХХ в., означает «создание химических продуктов и процессов без использования или образования вредных веществ».
Разработка концепции зеленой химии была вызвана прогрессирующим загрязнением окружающей среды, значительный вклад в которое вносит химическая промышленность.
Список литературы
- I.T.Horvath, P.T.Anastas. Chem. Rev., 107, 2169 (2007); https://doi.org/10.1021/cr078380v
- P.T.Anastas, J.C.Warner. Green Chemistry: Theory and Practice. (Oxford: Oxford University Press, 1998)
- R.A.Sheldon. Green Chem., 19, 18, (2017); https://doi.org/10.1039/C6GC02157C
- B.M.Trost. Science, 254, 1471 (1991); https://doi.org/10.1126/science.1962206
- R.A.Sheldon. Chem. Ind. (London), 903 (1992)
- A.D.Curzons, D.J.C.Constable, D.N.Mortimer, V.L.Cunningham. Green Chem., 3, 1 (2001);
https://doi.org/10.1039/b007871i - C.Jimenez-Gonzalez, C.S.Ponder, Q.B.Broxterman, J.B.Manley. Org. Process Res. Dev., 15, 912 (2011); https://doi.org/10.1021/op200097d
- E.Nakashima, H.Yamamoto. Chem. – Eur. J., 24, 1076 (2018); https://doi.org/10.1002/chem.201705982
- R.A.Sheldon. ACS Sustainable Chem. Eng., 6, 32 (2018);
https://doi.org/10.1021/acssuschemeng.7b03505 - M.Tobiszewski, W.Przychodzeń, M.Bystrzanowska, M.J.Milewska. Green Chem., 23, 9583 (2021); https://doi.org/10.1039/D1GC03108B
- K.Yue, Q.Zhou, R.Bird, L.Zhu, D.Zhang, D.Li, L.Zou, J.Yang, X.Fu, G.P.Georges. Org. Lett., 25, 2167 (2023); https://doi.org/10.1039/D1GC03108B
- Handbook of Green Chemistry and Technology. (Eds J.Clark, D.Macquarrie). (Blackwell Science Ltd, 2002)
- P.Anastas, N.Eghbali. Chem. Soc. Rev., 39, 301 (2010); https://doi.org/10.1039/B918763B
- S.A.Matlin, S.E.Cornell, A.Krief, H.Hopf, G.Mehta. Chem. Sci., 13, 11710 (2022); https://doi.org/10.1039/D2SC03603G
- J.Colberg, K.K.Hii, S.G.Koenig. Org. Process Res. Dev., 26, 2176 (2022); https://doi.org/10.1021/acs.oprd.2c00171
16.S.L.James, C.J.Adams, C.Bolm, D.Braga, P.Collier, T.Friščić, F.Grepioni, K.D.M.Harris, G.Hyett,
W.Jones, A.Krebs, J.Mack, L.Maini, A.G. Orpen, I.P.Parkin, W.C.Shearouse, J.W.Steed, D.C.Waddell. Chem. Soc. Rev., 41, 413 (2012); https://doi.org/10.1039/C1CS15171A - J.D.Lasso, D.J.Castillo-Pazos, C.-J.Li. Chem. Soc. Rev., 50, 10955 (2021); https://doi.org/10.1039/C1CS15171A
- S.Beil, M.Markiewicz, C.S.Pereira, P.Stepnowski, J.Thöming, S.Stolte. Chem. Rev., 121, 13132 (2021);https://doi.org/10.1021/acs.chemrev.0c01265
- S.Kar, H.Sanderson, K.Roy, E.Benfenati, J.Leszczynski. Chem. Rev., 122, 3637 (2022); https://doi.org/10.1021/acs.chemrev.1c00631
- A.Jordan, C.G.J.Hall, L.R.Thorp, H.F.Sneddon. Chem. Rev., 122, 6749 (2022);
https://doi.org/10.1021/acs.chemrev.1c00672 21.J.V.Tarazona, A.Fresno, S.Aycard, C.Ramos,
M.M.Vega, G.Carbonell. Sci. Total Environ., 247, 151 (2000); https://doi.org/10.1016/S0048-9697(99)00487-8 - A.Bour, F.Mouchet, J.Silvestre, L.Gauthier, E.Pinelli. J. Hazard. Mater., 283, 764 (2015);
https://doi.org/10.1016/j.jhazmat.2014.10.021 - K.S.Egorova, V.P.Ananikov. Organometallics, 36, 4071 (2017); https://doi.org/10.1021/acs.organomet.7b00605
- K.Gruiz, I.Fekete-Kertész, Z.Kunglné-Nagy, C.Hajdu, V.Feigl, E.Vaszita, M.Molnár. Sci. Total Environ., 563 – 564, 803 (2016); https://doi.org/10.1016/j.scitotenv.2016.01.007
- M.Gavrilescu, K.Demnerová, J.Aamand, S.Agathos, F.Fava. New Biotechnol., 32, 147 (2015);
https://doi.org/10.1016/j.nbt.2014.01.001 - https://doi.org/10.1126/science.aay6636
- A.C.Johnson, X.Jin, N.Nakada, J.P.Sumpter. Science, 367, 384 (2020); https://doi.org/10.1126/science.aay6637
28.X.Xin, G.Huang, B.Zhang. J. Hazard. Mater., 410, 124619 (2021);
https://doi.org/10.1016/j.jhazmat.2020.124619 - P.Glavič, R.Lukman. J. Cleaner Prod., 15, 1875 (2007); https://doi.org/10.1016/j.jclepro.2006.12.006
- C.J.Clarke, W.-C.Tu, O.Levers, A.Bröhl, J.P.Hallett. Chem. Rev., 118, 747 (2018);
https://doi.org/10.1021/acs.chemrev.7b00571 - R.A.Sheldon. Green Chem., 9, 1273 (2007); https://doi.org/10.1039/b713736m
- R.A.Sheldon. Chem. Commun., 3352 (2008); https://doi.org/10.1039/b803584a
- B.M.Trost. Angew. Chem., Int. Ed., 34, 259 (1995);
https://doi.org/10.1002/anie.199502591
34.D.Prat, A.Wells, J.Hayler, H.Sneddon, C.R.McElroy, S.Abou-Shehadad, P.J.Dunn. Green Chem.,
18, 288 (2016); https://doi.org/10.1039/C5GC01008J - R.A.Sheldon. Chem. Soc. Rev., 41, 1437 (2012); https://doi.org/10.1039/C1CS15219J
- D.T.Allen, N.Gathergood, P.Licence, B.Subramaniam. ACS Sustainable Chem. Eng., 8, 14627 (2020); https://doi.org/10.1021/acssuschemeng.0c06901
- E.S.Degtyareva, E.V.Borkovskaya, V.P.Ananikov. ACS Sustainable Chem. Eng., 7, 9680 (2019);
https://doi.org/10.1021/acssuschemeng.9b01405 - G.T.Ankley, R.S.Bennett, R.J.Erickson, D.J.Hoff, M.W.Hornung, R.D.Johnson, D.R.Mount, J.W.Nichols, C.L.Russom, P.K.Schmieder, J.A.Serrano, J.E.Tietge, D.L.Villeneuve. Environ. Chem., 29, 730 (2010); https://doi.org/10.1002/etc.34
- A.Gałuszka, Z.M.Migaszewski, P.Konieczka, J.Namieśnik. TrAC Trends Anal. Chem., 37, 61 (2012); https://doi.org/10.1016/j.trac.2012.03.013
- X.Gao, A.A.Abdul Raman, H.F.Hizaddin, M.M.Bello, A.Buthiyappan. J. Cleaner Prod., 305, 127154 (2021); https://doi.org/10.1016/j.jclepro.2021.127154
- https://doi.org/10.1016/j.jhazmat.2019.02.084
- L.Liu, Q.Wu, X.Miao, T.Fan, Z.Meng, X.Chen, W.Zhu. Chemosphere, 286, 131815 (2022);
https://doi.org/10.1016/j.chemosphere.2021.131815 - C.Martínez-Gómez, A.D.Vethaak, K.Hylland, T.Burgeot, A.Köhler, B.P.Lyons, J.Thain, M.J. Gubbins, I.M.Davies. ICES J. Mar. Sci., 67, 1105 (2010);
https://doi.org/10.1093/icesjms/fsq017 - T.T. Schug, R.Abagyan, B.Blumberg, T.J.Collins, D.Crews, P.L.DeFur, S.M.Dickerson, T.M.Edwards, A.C.Gore, L.J.Guillette, T.Hayes, J.J.Heindel, A.Moores, H.B.Patisaul, T.L.Tal, K.A.Thayer, L.N.Vandenberg, J.C.Warner, C.S.Watson, F.S.vom Saal, R.T.Zoeller, K.P.O’Brien, J.P.Myers. Green Chem., 15, 181 (2013); https://doi.org/10.1093/icesjms/fsq017
- K.S.Egorova, A.S.Galushko, V.P.Ananikov. Angew. Chem., Int. Ed., 59, 22296 (2020);
https://doi.org/10.1002/anie.202003082 - K.S.Egorova, A.S.Galushko, L.U.Dzhemileva, V.A.D′yakonov, V.P.Ananikov. Green Chem., 23, 6373 (2021); https://doi.org/10.1039/D1GC00207D
- E.O.Pentsak, L.U.Dzhemileva, V.A.D’yakonov, R.R.Shaydullin, A.S.Galushko, K.S.Egorova, V.P.Ananikov. J. Organomet. Chem., 965 – 966, 122319 (2022); https://doi.org/10.1016/j.jorganchem.2022.122319
- K.S.Egorova, A.S.Galushko, L.U.Dzhemileva, V.A.D’yakonov, V.P.Ananikov. Dokl. Chem., 504, 106 (2022); https://doi.org/10.1134/S0012500822600080
- K.S.Egorova, A.V.Posvyatenko, A.S.Galushko, V.P.Ananikov. Chemosphere, 313, 137378 (2023);
https://doi.org/10.1016/j.chemosphere.2022.137378 - F.A.Barile, S.Arjun, D.Hopkinson. Toxicol. in Vitro, 7, 111 (1993); https://doi.org/10.1016/0887-2333(93)90120-T
- F.A.Barile, M.Cardona. In Vitro Cell. Develop. Biol.: Anim., 34, 631 (1998); https://doi.org/10.1007/s11626-996-0011-0
- W.Zhang, W.-B.Yi. Pot, Atom, and Step Economy (PASE) Synthesis. (Cham: Springer 2019);
https://doi.org/10.1007/978-3-030-22596-4
53.T.Dalton, T.Faber, F.Glorius. ACS Cent. Sci., 7, 245 (2021); https://doi.org/10.1021/acscentsci.0c01413 - J.B.Zimmerman, P.T.Anastas, H.C.Erythropel, W.Leitner. Science, 367, 397 (2020);
https://doi.org/10.1126/science.aay3060 - T.Rogge, N.Kaplaneris, N.Chatani, J.Kim, S.Chang, B.Punji, L.L.Schafer, D.G.Musaev, J.Wencel-Delord, C.A.Roberts, R.Sarpong, Z.E.Wilson, M.A.Brimble, M.J.Johansson, L.Ackermann. Nat. Rev. Methods Primers, 1, 43 (2021); https://doi.org/10.1038/s43586-021-00041-2
- K.M.Altus, J.A.Love. Commun. Chem., 4, 173 (2021); https://doi.org/10.1038/s42004-021-00611-1
- L.Guillemard, N.Kaplaneris, L.Ackermann, M.J.Johansson. Nat. Rev. Chem., 5, 522 (2021);
https://doi.org/10.1038/s41570-021-00300-6 - Handbook of CH-Functionalization. (Ed. D.Maiti). (Weinheim: Wiley-VCH, 2022);
https://doi.org/10.1002/9783527834242 - B.Zhao, B.Prabagar, Z.Shi. Chem, 7, 2585 (2021); https://doi.org/10.1016/j.chempr.2021.08.001
- S.Roy, S.Panja, S.R.Sahoo, S.Chatterjee, D.Maiti. Chem. Soc. Rev., 52, 2391 (2023); https://doi.org/10.1039/D0CS01466D
- A.S.Budnikov, I.B.Krylov, O.M.Mulina, D.A.Lapshin, A.O.Terent’ev. Adv. Synth. Catal., 365, 1714 (2023); https://doi.org/10.1002/adsc.202300144
- Metal Free C–H Functionalization of Aromatics. Nucleophilic Displacement of Hydrogen. (1st Edn). (Eds V.N.Charushin, O.N.Chupakhin). In Topics in Heterocyclic Chemistry. Vol. 37. (Ser. Eds B.U.W. Maes, J. Cossy, S. Poland). (Cham: Springer, 2014)
- E.V.Verbitskiy, G.L.Rusinov, O.N.Chupakhin, V.N.Charushin. Synthesis, 50, 193 (2018);
https://doi.org/10.1055/s-0036-1589520 - A.V.Shchepochkin, F.V.Antipin, V.N.Charushin, O.N.Chupakhin. Dokl. Chem., 499, 123 (2021);
https://doi.org/10.1134/S0012500821070016 - J.F.Hartwig. J. Am. Chem. Soc., 138, 2 (2016); https://doi.org/10.1021/jacs.5b08707
- V.N.Charushin, O.N.Chupakhin. Russ. Chem. Bull., 68, 453 (2019); https://doi.org/10.1007/s11172-019-2441-3
- O.N.Chupakhin, V.N.Charushin. Pure Appl. Chem., 89, 1195 (2017); https://doi.org/10.1515/pac-2017-0108
- https://doi.org/10.1016/j.tetlet.2016.04.084
- O.N.Chupakhin, I.Y.Postovskii. Russ. Chem. Rev., 45, 454 (1976); https://doi.org/10.1070/RC1976v045n05ABEH002670
70.A.F.Pozharskii, A.M.Simonov, V.N.Doron’kin. Russ. Chem. Rev., 47, 1042 (1978);
https://doi.org/10.1070/RC1978v047n11ABEH002292 - A.V.Gulevskaya, A.F.Pozharskii. In Metal Free C–H Functionalization of Aromatics. Nucleophilic Displacement of Hydrogen (Eds V.N. Charushin, O.N.Chupakhin). (Cham: Springer, 2014). P. 179
- I.Borovlev, O.Demidov, N.Saigakova, G.Amangasieva. Eur. J. Org. Chem., 2014, 7675 (2014);
https://doi.org/10.1002/ejoc.201402891 - H.van der Plas. Adv. Heterocycl. Chem., 86, 1 (2004);
https://doi.org/10.1016/S0065-2725(03)86001-4 - M.Ma̧kosza, K.Wojciechowski. Chem. Rev., 104, 2631 (2004); https://doi.org/10.1021/cr020086+
- M.Mąkosza. Chem. Eur. J., 26, 15346 (2020); https://doi.org/10.1002/chem.202003770
- O.N.Chupakhin, V.N.Charushin, H.C.van der Plas. Nucleophilic Aromatic Substitution of Hydrogen. (San Diego, CA: Academic Press, 1994)
- V.N.Charushin, O.N.Chupakhin. Mendeleev Commun., 17, 249 (2007); https://doi.org/10.1016/j.mencom.2007.09.001
- M.D.Mandler, N.Suss, A.Ramirez, C.A.Farley, D.Aulakh, Y.Zhu, S.C.Traeger, A.Sarjeant, M.L.Davies, B.A.Ellsworth, A.Regueiro-Ren. Org. Lett., 24, 7643 (2022); https://doi.org/10.1021/acs.orglett.2c03133
- W.S.Ham, H.Choi, J.Zhang, D.Kim, S.Chang. J. Am. Chem. Soc., 144, 2885 (2022); https://doi.org/10.1021/jacs.1c13373
- H.Li, F.Lv, X.Guo, Q.Wu, H.Wu, B.Tang, C.Yu, H.Wang, L.Jiao, E.Hao. Chem. Commun., 57, 1647 (2021); https://doi.org/10.1039/D0CC07961H
A.A.Akulov, M.V.Varaksin, P.Mampuys, V.N.Charushin, O.N.Chupakhin, B.U.W.Maes. Org. Biomol. Chem., 19, 297 (2021); https://doi.org/10.1039/D0OB01580F 82.
A.A.Akulov, M.V.Varaksin, V.N.Charushin, O.N.Chupakhin. Russ. Chem. Rev., 90, 374 (2021);
https://doi.org/10.1070/RCR4978
83. T.D.Moseev, M.V.Varaksin, D.A.Gorlov, V.N.Charushin, O.N.Chupakhin. J. Org. Chem., 85, 11124 (2020); https://doi.org/10.1021/acs.joc.0c01042
84.
I.S.Kovalev, D.S.Kopchuk, G.VZyryanov, V.L.Rusinov, O.N.Chupakhin, V.N.Charushin. Russ. Chem. Rev., 84, 1191 (2015); https://doi.org/10.1070/RCR4462 85. A.V.Shchepochkin, O.N.Chupakhin, N.S.Demina, M.A.Averkov, T.Y.Shimanovskaya, P.A.Slepukhin, P.A.Volkov, A.A.Telezhkin, B.A.Trofimov, V.N.Charushin. Synthesis, 53, 3791 (2021); https://doi.org/10.1055/a-1521-3166
86. O.N.Chupakhin, A.V.Shchepochkin, V.N.Charushin. In Advances in Heterocyclic Chemistry. Vol. 131. (Eds E.F.V.Scriven, C.A.Ramsden). (Academic Press, 2020). P. 1
87. A.V.Shchepochkin, O.N.Chupakhin, V.N.Charushin, V.A.Petrosyan. Russ. Chem. Rev., 82, 747 (2013); https://doi.org/10.1070/RC2013v082n08ABEH004386
88. R.Tyburski, T.Liu, S.D.Glover, L.Hammarström. J. Am. Chem. Soc., 143, 560 (2021); https://doi.org/10.1021/jacs.0c09106
89. P.R.D.Murray, J.H.Cox, N.D.Chiappini, C.B.Roos, E.A.McLoughlin, B.G.Hejna, S.T.Nguyen, H.H.Ripberger, J.M.Ganley, E.Tsui, N.Y.Shin, B.Koronkiewicz, G.Qiu, R.R.Knowles. Chem. Rev., 122, 2017 (2022); https://doi.org/10.1021/acs.chemrev.1c00374
90. E.C.Gentry, R.R.Knowles. Acc. Chem. Res., 49, 1546 (2016); https://doi.org/10.1021/acs.accounts.6b00272
91. L.Capaldo, D.Ravelli. Eur. J. Org. Chem., 2017, 2056 (2017); https://doi.org/10.1002/ejoc.201601485
92. L.Capaldo, D.Ravelli, M.Fagnoni. Chem. Rev., 122, 1875 (2022); https://doi.org/10.1021/acs.chemrev.1c00263
93.L.Capaldo, L.L.Quadri, D.Ravelli. Green Chem., 22, 3376 (2020);
https://doi.org/10.1039/D0GC01035A
94.H.Cao, X.Tang, H.Tang, Y.Yuan, J.Wu. Chem Catal., 1, 523 (2021);
https://doi.org/10.1016/j.checat.2021.04.008
95. S.Sarkar, K.P.S.Cheung, V.Gevorgyan. Chem. Sci., 11, 12974 (2020); https://doi.org/10.1039/D0SC04881J
96. G.Kumar, S.Pradhan, I.Chatterjee. Chem. – Asian J., 15, 651 (2020); https://doi.org/10.1002/asia.201901744
97.R.S.J.Proctor, R.J.Phipps. Angew. Chem., Int. Ed., 58, 13666 (2019); https://doi.org/10.1002/anie.201900977
98. W.Wang, S.Wang. Curr. Org. Chem., 25, 894 (2021);
https://doi.org/10.2174/1385272824999201230211157
99. P.D.Bacoş, A.S.K.Lahdenperä, R.J.Phipps. Acc. Chem. Res., 56, 2037 (2023); https://doi.org/10.1021/acs.accounts.3c00247
100. D.T.Mooney, P.R.Moore, A.L.Lee. Org. Lett., 24, 8008 (2022); https://doi.org/10.1021/acs.orglett.2c03206
101.B.Bieszczad, L.A.Perego, P.Melchiorre. Angew. Chem., Int. Ed., 58, 16878 (2019);
https://doi.org/10.1002/anie.201910641
102. Q.-Q.Han, D.-M.Chen, Z.-L.Wang, Y.-Y.Sun, S.-H.Yang, J.-C.Song, D.-Q.Dong. Chin. Chem. Lett., 32, 2559 (2021); https://doi.org/10.1016/j.cclet.2021.02.018
103. M.B.Smith. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. (8th Edn). (Hoboken: Wiley, 2020)
104. L.Zhou, W.Lu. Chem. Eur. J., 20, 634 (2014); https://doi.org/10.1002/chem.201303670
105. M.Pareek, Y.Reddi, R.B.Sunoj. Chem. Sci., 12, 7973 (2021); https://doi.org/10.1039/D1SC01910D
106. K.Liu, M.Schwenzer, A.Studer. ACS Catal., 12, 11984 (2022); https://doi.org/10.1021/acscatal.2c03996
107. K.Ohkubo, T.Kobayashi, S.Fukuzumi. Angew. Chem., Int. Ed., 50, 8652 (2011); https://doi.org/10.1002/anie.201102931
108. C.K.Prier, D.A.Rankic, D.W.C.MacMillan. Chem. Rev., 113, 5322 (2013); https://doi.org/10.1021/cr300503r
109. P.Gandeepan, T.Müller, D.Zell, G.Cera, S.Warratz, L.Ackermann. Chem. Rev., 119, 2192 (2019);
https://doi.org/10.1021/acs.chemrev.8b00507
110. J. Loup, U. Dhawa, F. Pesciaioli, J. Wencel-Delord, L. Ackermann. Angew. Chem., Int. Ed., 58, 12803 (2019); https://doi.org/10.1002/anie.201904214
111. R.M.Bullock, J.G.Che, L.Gagliardi, P.J.Chiri, O.K.Farh, C.H.Hendo, C.W.Jone, J.A.Keit, J.Klosin, S.D.Mintee, R.H.Morri, A.T.Radosevic, T.B.Rauchfus, N.A.Strotma, A.Vojvodic, T.R.War, J.Y.Yan, Y.Surendranath. Science, 369, eabc3183 (2020); https://doi.org/10.1126/science.abc3183
112. D.Balcells, E.Clot, O.Eisenstein. Chem. Rev., 110, 749 (2010); https://doi.org/10.1021/cr900315k
113. D.Gallego, E.A.Baquero. Open Chem., 16, 1001 (2018); https://doi.org/10.1515/chem-2018-0102
114. A.R.Kapdi. In Organometallic Chemistry. Vol. 38.
(Eds I.J.S.Fairlamb, J.M. Lynam). (RSC Publishing, 2012). P. 48; https://doi.org/10.1039/9781849734868-00048
115. F.Roudesly, J.Oble, G.Poli. J. Mol. Catal.: A Chem., 426, 275 (2017); https://doi.org/10.1016/j.molcata.2016.06.020
116. R.L.Carvalho, R.G.Almeida, K.Murali, L.A.Machado, L.F.Pedrosa, P.Dolui, D.Maiti, E.N.da Silva Júnior. Org. Biomol. Chem., 19, 525 (2021); https://doi.org/10.1039/D0OB02232B
117. F.Zhang, D.R.Spring. Chem. Soc. Rev., 43, 6906 (2014); https://doi.org/10.1039/C4CS00137K
118. G.Rani, V.Luxami, K.Paul. Chem. Commun., 56, 12479 (2020); https://doi.org/10.1039/D0CC04863A
119. A.Zarkadoulas, I.Zgouleta, N.V.Tzouras, G.C.Vougioukalakis. Catalysts, 11, 554 (2021);
https://doi.org/10.3390/catal11050554
120. N.Goswami, T.Bhattacharya, D.Maiti. Nat. Rev. Chem., 5, 646 (2021); https://doi.org/10.1038/s41570-021-00311-3
121. C.Jacob, B.U.W.Maes, G.Evano. Chem. – Eur. J., 27, 13899 (2021); https://doi.org/10.1002/chem.202101598
122. J.I. Higham, J.A. Bull. Org. Biomol. Chem., 18, 7291 (2020); https://doi.org/10.1039/D0OB01587C
123. P.Gandeepan, L.Ackermann. Chem, 4, 199 (2018); https://doi.org/10.1016/j.chempr.2017.11.002
124. Q.Zhao, T.Poisson, X.Pannecoucke, T.Besset. Synthesis, 49, 4808 (2017); https://doi.org/10.1055/s-0036-1590878
125. B.Niu, K.Yang, B.Lawrence, H.Ge. ChemSusChem, 12, 2955 (2019); https://doi.org/10.1002/cssc.201900151
126. G.Liao, T.Zhang, Z.K.Lin, B.F.Shi. Angew. Chem., Int. Ed., 59, 19773 (2020); https://doi.org/10.1002/anie.202008437
127. J.I.Higham, T.-K.Ma, J.A.Bull. Org. Lett., 25, 5285 (2023); https://doi.org/10.1021/acs.orglett.3c01783
128. L.C.Campeau, S.Rousseaux, K.Fagnou. J. Am. Chem. Soc., 127, 18020 (2005); https://doi.org/10.1021/ja056800x
129. L.C.Campeau, D.J.Schipper, K.Fagnou. J. Am. Chem. Soc., 130, 3266 (2008); https://doi.org/10.1021/ja710451s
130. L.C.Campeau, M.Bertrand-Laperle, J.P.Leclerc, E.Villemure, S.Gorelsky, K.Fagnou. J. Am. Chem. Soc., 130, 3276 (2008); https://doi.org/10.1021/ja7107068
131. M.P.Huestis, K.Fagnou. Org. Lett., 11, 1357 (2009);
https://doi.org/10.1021/ol900150u
132. A.A.Akulov, M.V.Varaksin, V.N.Charushin, O.N.Chupakhin. ACS Omega, 4, 825 (2019);
https://doi.org/10.1021/acsomega.8b02916
133. U.Dutta, S.Maiti, T.Bhattacharya, D.Maiti. Science, 372, eabd5992 (2021); https://doi.org/10.1126/science.abd5992
134. S.K.Sinha, S.Guin, S.Maiti, J.P.Biswas, S.Porey, D.Maiti. Chem. Rev., 122, 5682 (2022);
https://doi.org/10.1021/acs.chemrev.1c00220
135.1 J.F.Hartwig, M.A.Larsen. ACS Cent. Sci., 2, 281 (2016); https://doi.org/10.1021/acscentsci.6b00032
136. B.Ramadoss, Y.Jin, S.Asako, L.Ilies. Science, 375, 658 (2022); https://doi.org/10.1126/science.abm7599
137. J.H.Docherty, T.M.Lister, G.Mcarthur, M.T.Findlay, P.Domingo-Legarda, J.Kenyon, S.Choudhary, I.Larrosa. Chem. Rev., 123, 7692 (2023); https://doi.org/10.1021/acs.chemrev.2c00888
138. S.Barranco, J.Zhang, S.López-Resano, A.Casnati, M.H.Pérez-Temprano. Nat. Synth., 1, 841 (2022); https://doi.org/10.1038/s44160-022-00180-8
139.11 Q.Zhang, L.S.Wu, B.F.Shi. Chem, 8, 384 (2022);
https://doi.org/10.1016/j.chempr.2021.11.015
140. S.Rej, A.Das, N.Chatani. Coord. Chem. Rev., 431, 213683 (2021); https://doi.org/10.1016/j.ccr.2020.213683
141. N.Y.S.Lam, K.Wu, J.-Q.Yu. Angew. Chem., Int. Ed., 60, 15767 (2021); https://doi.org/10.1002/anie.202011901
142. T.K.Achar, S.Maiti, S.Jana, D.Maiti. ACS Catal., 10, 13748 (2020); https://doi.org/10.1021/acscatal.0c03743
143. S.Rej, N.Chatani. Angew. Chem., Int. Ed., 58, 8304 (2019); https://doi.org/10.1002/anie.201808159
144. Q.Zhao, G.Meng, S.P.Nolan, M.Szostak. Chem. Rev., 120, 1981 (2020); https://doi.org/10.1021/acs.chemrev.9b00634
145. A.Y.Chan, I.B.Perry, N.B.Bissonnette, B.F.Buksh, G.A.Edwards, L.I.Frye, O.L.Garry, M.N.Lavagnino, B.X.Li, Y.Liang, E.Mao, A.Millet, J.V.Oakley, N.L.Reed, H.A.Sakai, C.P.Seath, D.W.C.MacMillan. Chem. Rev., 122, 1485 (2022); https://doi.org/10.1021/acs.chemrev.1c00383
146. T.Sarkar, T.A.Shah, P.K.Maharana, B.Debnath, T.Punniyamurthy. Eur. J. Org. Chem., 2022, e202200541 (2022); https://doi.org/10.1002/ejoc.202200541
147. L.Guillemard, J.Wencel-Delord. Beilstein J. Org. Chem., 16, 1754 (2020); https://doi.org/10.3762/bjoc.16.147
148.W.J.Zhou, Y.H.Zhang, Y.Y.Gui, L.Sun, D.G.Yu. Synthesis, 50, 3359 (2018);
https://doi.org/10.1055/s-0037-1610222
149. V.Dwivedi, D.Kalsi, B.Sundararaju. ChemCatChem, 11, 5160 (2019); https://doi.org/10.1002/cctc.201900680
150. 1M.Shee, N.D.P.Singh. Catal. Sci. Technol., 11, 742 (2021); https://doi.org/10.1039/D0CY02071K
151. P.S.Saha, P.Gopinath. Eur. J. Org. Chem., 2022, e202200733 (2022); https://doi.org/10.1002/ejoc.202200733
152. P.Chakraborty, R.Mandal, S.Paira, B.Sundararaju. Chem. Commun., 57, 13075 (2021);
https://doi.org/10.1039/D1CC04872D
153. L.Mantry, R.Maayuri, V.Kumar, P.Gandeepan. Beilstein J. Org. Chem., 17, 2209 (2021);
https://doi.org/10.3762/bjoc.17.143
154. S.Witzel, A.S.K.Hashmi, J.Xie. Chem. Rev., 121, 8868 (2021); https://doi.org/10.1021/acs.chemrev.0c00841
155. 1 P.K.Baroliya, M.Dhaker, S.Panja, S.A.Al-Thabaiti, S.M.Albukhari, Q.A.Alsulami, A.Dutta, D.Maiti. ChemSusChem, 16, e202202201 (2023);
https://doi.org/10.1002/cssc.202202201
156. T.H.Meyer, L.H.Finger, P.Gandeepan, L.Ackermann. Trends Chem., 1, 63 (2019); https://doi.org/10.1016/j.trechm.2019.01.011
157. N. Sauermann, T.H. Meyer, L. Ackermann. Chem. – Eur. J., 24, 16209 (2018); https://doi.org/10.1002/chem.201802706
158. J.Chen, S.Lv, S.Tian. ChemSusChem, 12, 115 (2019);
https://doi.org/10.1002/cssc.201801946
159. R.C.Samanta, T.H.Meyer, I.Siewert, L.Ackermann. Chem. Sci., 11, 8657 (2020); https://doi.org/10.1039/D0SC03578E
160. K.J.Jiao, Y.K.Xing, Q.L.Yang, H.Qiu, T.S.Mei. Acc. Chem. Res., 53, 300 (2020);
https://doi.org/10.1021/acs.accounts.9b00603
161. S.Changmai, S.Sultana, A.K.Saikia. ChemistrySelect, 8, e202203530 (2023); https://doi.org/10.1002/slct.202203530
162. S.K.Zhang, R.C.Samanta, A.Del Vecchio, L.Ackermann. Chem. – Eur. J., 26, 10936 (2020); https://doi.org/10.1002/chem.202001318
163. J.E.Erchinger, M.van Gemmeren. Asian J. Org. Chem., 10, 50 (2021); https://doi.org/10.1002/ajoc.202000372
164. V.Kumar, R.Maayuri, L.Mantry, P.Gandeepan. Chem. – Asian J., 18, e202300060 (2023); https://doi.org/10.1002/asia.202300060
165. Y.Qin, L.Zhu, S.Luo. Chem. Rev., 117, 9433 (2017);
https://doi.org/10.1021/acs.chemrev.6b00657
166. N.Holmberg-Douglas, D.A.Nicewicz. Chem. Rev., 122, 1925 (2022); https://doi.org/10.1021/acs.chemrev.1c00311
167. N.A.Romero, D.A.Nicewicz. Chem. Rev., 116, 10075 (2016); https://doi.org/10.1021/acs.chemrev.6b00057
168. E.R.Lopat’eva, I.B.Krylov, D.A.Lapshin, A.O.Terent’ev, Beilstein J. Org. Chem., 18, 1672 (2022);
https://doi.org/10.3762/bjoc.18.179
169. J.W.Lee, S.Lim, D.N.Maienshein, P.Liu, M.-Y.Ngai. Angew. Chem., Int. Ed., 59, 21475 (2020);
https://doi.org/10.1002/anie.202009490
170. T.K.Das, A.T.Biju. Chem. Commun., 56, 8537 (2020);
https://doi.org/10.1039/D0CC03290E
171. S.Barik, S.Shee, A.T.Biju. Org. Lett., 24, 6066 (2022);
https://doi.org/10.1021/acs.orglett.2c02413
172. D.Basavaiah, R.T.Naganaboina. New J. Chem., 42, 14036 (2018); https://doi.org/10.1039/C8NJ02483A
173. S.Biswas, N.Bania, S.Chandra Pan. Chem. Rec., 23, e202200257 (2023); https://doi.org/10.1002/tcr.202200257
174.
175. S.M.Yang, G.Madhusudhan Reddy, M.H.Liu, T.P.Wang, J.K.Yu, W.Lin. J. Org. Chem., 82, 781 (2017); https://doi.org/10.1021/acs.joc.6b02526
176. W.-K.Wang, F.-Y.Bao, S.-T.Wang, S.-Y.Zhao. J. Org. Chem., 88, 7489 (2023); https://doi.org/10.1021/acs.joc.3c00284
177. https://doi.org/10.1002/anie.201805019
178. D.Basavaiah, A.Jaganmohan Rao. Tetrahedron Lett., 44, 4365 (2003); https://doi.org/10.1016/S0040-4039(03)00934-1
179. Y.D.Shao, D.J.Cheng. ChemCatChem, 13, 1271 (2021); https://doi.org/10.1002/cctc.202001750
180. S.Brunen, B.Mitschke, M.Leutzsch, B.List. J. Am. Chem. Soc., 145, 15708 (2023); https://doi.org/10.1021/jacs.3c05148
181. N.Li, W.X.Zhang. Chin. J. Chem., 38, 1360 (2020); https://doi.org/10.1002/cjoc.202000027
182.D.W.Stephan. Chem, 6, 1520 (2020); https://doi.org/10.1016/j.chempr.2020.05.007
183. D.W.Stephan, G.Erker. Angew. Chem., Int. Ed., 54, 6400 (2015); https://doi.org/10.1002/anie.201409800
184. M.A.Légaré, M.A.Courtemanche, É.Rochette, F.G.Fontaine. Science, 349, 513 (2015);
https://doi.org/10.1126/science.aab3591
185. Y.Shao, J.Zhang, Y.Li, Y.Liu, Z.Ke, Org. Lett., 20, 1102 (2018); https://doi.org/10.1021/acs.orglett.8b00024
186. C.M.Josephitis, H.M.H.Nguyen, A.McNally. Chem. Rev., 123, 7655 (2023); https://doi.org/10.1021/acs.chemrev.2c00881
187. L.Zhang, T.Ritter. J. Am. Chem. Soc., 144, 2399 (2022); https://doi.org/10.1021/jacs.1c10783
188. B.A.Arndtsen, R.G.Bergman, T.A.Mobley, T.H.Peterson.
Acc. Chem. Res., 28, 154 (1995); https://doi.org/10.1021/ar00051a009
189. K.Godula, D.Sames. Science, 312, 67 (2006);
https://doi.org/10.1126/science.1114731
190. D.C.Blakemore, L.Castro, I.Churcher, D.C.Rees, A.W.Thomas, D.M.Wilson, A.Wood. Nat. Chem., 10, 383 (2018); https://doi.org/10.1038/s41557-018-0021-z
191. M.C.White, J.Zhao. J. Am. Chem. Soc., 140, 13988 (2018); https://doi.org/10.1021/jacs.8b05195
192. M.Moir, J.J.Danon, T.A.Reekie, M.Kassiou. Expert Opin. Drug Discov., 14, 1137 (2019);
https://doi.org/10.1080/17460441.2019.1653850
193. N.J.Castellino, A.P.Montgomery, J.J.Danon, M.Kassiou. Chem. Rev., 123, 8127 (2023);
https://doi.org/10.1021/acs.chemrev.2c00797
194. B.Hong, T.Luo, X.Lei. ACS Cent. Sci., 6, 622 (2020);
https://doi.org/10.1021/acscentsci.9b00916
195. K.P.Bryliakov. Chem. Rev., 117, 11406 (2017);
https://doi.org/10.1021/acs.chemrev.7b00167
196. R.Breslow. Acc. Chem. Res., 13, 170 (1980);
https://doi.org/10.1021/ar50150a002
197. C.E.Tinberg, S.J.Lippard. Acc. Chem. Res., 44, 280 (2011); https://doi.org/10.1021/ar1001473
198. P.R.Ortiz de Montellano. Chem. Rev., 110, 932 (2010);
https://doi.org/10.1021/cr9002193
199. J.Chen, Z.Jiang, S.Fukuzumi, W.Nam, B.Wang. Coord. Chem. Rev., 412, 213443 (2020);
https://doi.org/10.1016/j.ccr.2020.213443
200. L.Vicens, G.Olivo, M.Costas. ACS Catal., 10, 8611 (2020); https://doi.org/10.1021/acscatal.0c02073
201. M.Costas. Chem. Rec., 21, 4000 (2021); https://doi.org/10.1002/tcr.202100227
202. K.Bryliakov. ACS Catal., 13, 10770 (2023);
https://doi.org/10.1021/acscatal.3c02282
203. X.Huang, J.T.Groves. J. Biol. Inorg. Chem., 22, 185 (2017); https://doi.org/10.1007/s00775-016-1414-3
204. F.H.Vaillancourt, E.Yeh, D.A.Vosburg, S.Garneau-Tsodikova, C.T.Walsh. Chem. Rev., 106, 3364 (2006);
https://doi.org/10.1021/cr050313i
205. R.V.Ottenbacher, A.A.Bryliakova, M.V.Shashkov, E.P.Talsi, K.P.Bryliakov. ACS Catal., 11, 5517 (2021); https://doi.org/10.1021/acscatal.1c00811
206. K.B.Cho, H.Hirao, S.Shaik, W.Nam. Chem. Soc. Rev., 45, 1197 (2016); https://doi.org/10.1039/C5CS00566C
207. G.B.Shul’pin. J. Mol. Catal. A. Chem., 189, 39 (2002);
https://doi.org/10.1016/S1381-1169(02)00196-6
208. E.P.Talsi, K.P.Bryliakov. Coord. Chem. Rev., 256, 1418 (2012); https://doi.org/10.1016/j.ccr.2012.04.005
209. M.Canta, M.Rodríguez, M.Costas. In Site-Selective Catalysis. Topics in Current Chemistry. Vol. 372. (Ed. T.Kawabata). (Cham: Springer, 2015). P. 27;
https://doi.org/10.1007/128_2015_659
210. M.S.Chen, M.C.White. Science, 318, 783 (2007);
https://doi.org/10.1126/science.1148597
211. M.S.Chen, M.C.White. Science, 327, 566 (2010);
https://doi.org/10.1126/science.1183602
212. P.E.Gormisky, M.C.White. J. Am. Chem. Soc., 135, 14052 (2013); https://doi.org/10.1021/ja407388y
213. M.A.Bigi, S.A.Reed, M.C.White. J. Am. Chem. Soc., 134, 9721 (2012); https://doi.org/10.1021/ja301685r
214. J.M.Howell, K.Feng, J.R.Clark, L.J.Trzepkowski, M.C.White. J. Am. Chem. Soc., 137, 14590 (2015); https://doi.org/10.1021/jacs.5b10299
215. V.Dantignana, M.Milan, O.Cussó, A.Company, M.Bietti, M.Costas. ACS Cent. Sci., 3, 1350 (2017); https://doi.org/10.1021/acscentsci.7b00532
216. M.Borrell, S.Gil-Gaballero, M. Bietti, M.Costas. ACS Catal., 10, 4720 (2020); https://doi.org/10.1021/acscatal.9b05423
217.
R.V.Ottenbacher, D.G.Samsonenko, E.P.Talsi, K.P.Bryliakov. Org. Lett., 14, 4310 (2012); https://doi.org/10.1021/ol3015122
218.
E.P.Talsi, R.V.Ottenbacher, K.P.Bryliakov. J. Organomet. Chem., 793, 102 (2015);
https://doi.org/10.1016/j.jorganchem.2014.12.014
219.
R.V.Ottenbacher, E.P.Talsi, K.P.Bryliakov. Molecules, 21, 1454 (2016); https://doi.org/10.3390/molecules21111454
220.
R.V.Ottenbacher, E.P.Talsi, K.P.Bryliakov. Chem. Rec., 18, 78 (2018); https://doi.org/10.1002/tcr.201700032
221.
T.Uchida. Chem. Rec., e202300156 (2023);
https://doi.org/10.1002/tcr.202300156
222.
G.Olivo, G.Farinelli, A.Barbieri, O.Lanzalunga, S.Di Stefano, M.Costas. Angew. Chem., Int. Ed., 56, 16347 (2017);
https://doi.org/10.1002/anie.201709280
223.
G.Olivo, G.Capocasa, B.Ticconi, O.Lanzalunga, S.Di Stefano, M.Costas. Angew. Chem., Int. Ed., 59, 12703 (2020);
https://doi.org/10.1002/anie.202003078
224.
Q.Sun, W.Sun. Org. Lett., 22, 9529 (2020);
https://doi.org/10.1021/acs.orglett.0c03585
225.
R.V.Ottenbacher, E.P.Talsi, K.P.Bryliakov. J. Catal., 390, 170 (2020); https://doi.org/10.1016/j.jcat.2020.08.005
226.
B.Qiu, D.Xu, Q.Sun, C.Miao, Y.M.Lee, X.X.Li, W.Nam, W.Sun. ACS Catal., 8, 479 (2018);
https://doi.org/10.1021/acscatal.7b03601
227.
B.Qiu, D.Xu, Q.Sun, J.Lin, W.Sun. Org. Lett., 21, 618 (2019); https://doi.org/10.1021/acs.orglett.8b03652
228.
R.V.Ottenbacher, D.G.Samsonenko, A.A.Nefedov, E.P.Talsi, K.P.Bryliakov. J. Catal., 399, 224 (2021);
https://doi.org/10.1016/j.jcat.2021.05.014
229.
R.V.Ottenbacher, D.G.Samsonenko, A.A.Nefedov, K.P.Bryliakov. J. Catal., 415, 12 (2022);
https://doi.org/10.1016/j.jcat.2022.09.020
230.
R.V.Ottenbacher, D.G.Samsonenko, A.A.Bryliakova, A.A.Nefedov, K.P.Bryliakov. J. Catal., 425, 32 (2023);
https://doi.org/10.1016/j.jcat.2023.06.003
231.
V.C.S.Santana, E.C.S.Rocha, J.C.S.Pavan, V.C.G.Heleno, E.C.de Lucca Jr. J. Org. Chem., 87, 10462 (2022);
https://doi.org/10.1021/acs.joc.2c01051
232.
M.Cianfanelli, G.Olivo, M.Milan, R.J.M.Klein Gebbink, X.Ribas, M.Bietti, M.Costas. J. Am. Chem. Soc., 142, 1584 (2020); https://doi.org/10.1021/jacs.9b12239
233.
L.Vicens, M.Bietti, M.Costas. Angew. Chem., Int. Ed., 60, 4740 (2021); https://doi.org/10.1002/anie.202007899
234.
A.Call, M.Cianfanelli, P.Besalu-Sala, G.Olivo, A.Palone, L.Vicens, X.Ribas, J.M.Luis, M.Bietti, M.Costas. J. Am. Chem. Soc., 144, 19542 (2022);
https://doi.org/10.1021/jacs.2c08620
235.
V.I.Kurganskiy, R.V.Ottenbacher, M.V.Shashkov, E.P.Talsi, D.G.Samsonenko, K.P.Bryliakov. Org. Lett., 24, 8764 (2022); https://doi.org/10.1021/acs.orglett.2c03458
236.
T.Fantoni, A.Tolomelli, W.Cabri. Catal. Today, 397 – 399, 265 (2022); https://doi.org/10.1016/j.cattod.2021.09.022
237.
P.M.Nowak. Green Chem., 25, 4625 (2023);
https://doi.org/10.1039/D3GC00800B
238.
P.T.Anastas, J.B.Zimmerman. Curr. Opin. Green Sustainable Chem., 13, 150 (2018);
https://doi.org/10.1016/j.cogsc.2018.04.017
239.
P.T.Anastas, J.B.Zimmerman. Green Chem., 21, 6545 (2019); https://doi.org/10.1039/C9GC01293A
240.
I.P.Beletskaya. J. Organomet. Chem., 250, 551 (1983);
https://doi.org/10.1016/0022-328X(83)85077-3
241.
N.A.Bumagin, I.O.Kalinovskii, I.P.Beletskaya. Bull. Acad. Sci. USSR, Chem. Sci., 32, 1469 (1983);
https://doi.org/10.1007/BF00954359
242.
R.Sheldon, I.W.C.E.Arrends, U.Hanefeld. In Green Chemistry and Catalysis. (Weinheim: Wiley-VCH, 2007);
https://doi.org/10.1002/9783527611003
243.
B.H.Lipshutz, A.R.Abela, Z.V.Boskovic, T.Nishikata, C.Duplais, A.Krasovskiy. Top. Catal., 53, 985 (2010);
https://doi.org/10.1007/s11244-010-9537-1
244.
I.P.Beletskaya. In New Aspects of Organic Chemistry.
(Eds Z.Yoshida, Y.Ohshiro) (Tokio: Kodansha, 1992). P. 31
245.
A.V.Cheprakov, N.V.Ponomareva, I.P.Beletskaya. J. Organomet. Chem., 486, 297 (1995);
https://doi.org/10.1016/0022-328X(94)05102-H
246.
N.A.Bumagin, V.V.Bykov, I.P.Beletskaya. Bull. Acad. Sci. USSR, Chem. Sci., 38, 2206 (1989);
https://doi.org/10.1007/BF00962156
247.
Y.Uozumi, H.Danjo, T.Hayashi. J. Org. Chem., 64, 3384 (1999); https://doi.org/10.1021/jo982438b
248.
Y.Uozumi, Y.Kobayashi. Heterocycles, 59, 71 (2003);
https://doi.org/10.3987/COM-02-S21
249.
T.Suzuka, Y.Okada, K.Ooshiro, Y.Uozumi. Tetrahedron, 66, 1064 (2010); https://doi.org/10.1016/j.tet.2009.11.011
250.
Y.Hirai, Y.Uozumi. Chem. Commun., 46, 1103 (2010);
https://doi.org/10.1039/B918424D
251.
A.V.Selivanova, V.S.Tyurin, I.P.Beletskaya. ChemPlusChem, 79, 1278 (2014); https://doi.org/10.1002/cplu.201402111
252.
I.P.Beletskaya, A.V.Selivanova, V.S.Tyurin, V.V.Matveev, A.R.Khokhlov. Russ. J. Org. Chem., 46, 157 (2010);
https://doi.org/10.1134/S1070428010020016
253.
G.Lu, R.Franzén, Q.Zhang, Y.Xu. Tetrahedron Lett., 46, 4255 (2005); https://doi.org/10.1016/j.tetlet.2005.04.022
254.
T.Maegawa, Y.Kitamura, S.Sako, T.Udzu, A.Sakurai, A.Tanaka, Y.Kobayashi, K.Endo, U.Bora, T.Kurita, A.Kozaki, Y.Monguchi, H.Sajiki. Chem. Eur. J., 13, 5937 (2007);
https://doi.org/10.1002/chem.200601795
255.
M.Yousaf, A.F.Zahoor, R.Akhtar, M.Ahmad, S.Naheed.
Mol. Divers., 24, 821 (2020);
https://doi.org/10.1007/s11030-019-09988-7
256.
S.E.Hooshmand, B.Heidari, R.Sedghi, R.S.Varma. Green. Chem., 21, 381 (2019); https://doi.org/10.1039/C8GC02860E
257.
F.Mohajer, M.M. Heravi, V.Zadsirjan, N.Poormohammad. RSC Adv., 11, 6885 (2021);
https://doi.org/10.1039/D0RA10575A
258.
M.A.Andrade, L.M.D.R.S.Martins. Molecules, 25, 5506 (2020); https://doi.org/10.3390/molecules25235506
259.
E.G.Kuntz. Chemtech, 17, 570 (1987);
https://doi.org/10.1016/S0190-9622(87)80442-5
260.
I.P.Beletskaya, A.V.Cheprakov. In Aqueous Transition Metal Catalysis in Organic Synthesis in Water. (Ed. P.A.Grieco). (London, Weinheim, New York, Tokyo, Melbourne, Madras: Blackie Academic and Professional, 1998). P. 141;
https://doi.org/10.1007/978-94-011-4950-1_5
261.
A.L.Casalnuovo, J.C.Calabrese. J. Am. Chem. Soc., 112, 4324 (1990); https://doi.org/10.1021/ja00167a032
262.
C.A.Fleckenstein, H.Plenio. Green Chem., 9, 1287 (2007); https://doi.org/10.1039/b711965h
263.
C.Fleckenstein, S.Roy, S.Leuthäußer, H.Plenio. Chem. Commun., 2007, 2870 (2007);
https://doi.org/10.1039/B703658B
264.
W.Y.Wu, S.-N.Chen, F.-Y.Tsai. Tetrahedron Lett., 47, 9267 (2006); https://doi.org/10.1016/j.tetlet.2006.10.127
265.
C.M.Zinser, K.G.Warren, R.E.Meadows, F.Nahra, A.M.Al-Majid, A.Barakat, M.S.Islam, S.P.Nolan, C.S.Cazin. Green Chem., 20, 3246 (2018); https://doi.org/10.1039/C8GC00860D
266.
E.B.Landstrom, S.Handa, D.H.Aue, F.Gallou, B.H.Lipshutz. Green Chem., 20, 3436 (2018);
https://doi.org/10.1039/C8GC01356J
267.
P.Orecchia, D.Slavcheva Petkova, R.Goetz, F. Rominger, A.S.K.Hashmi, T.Schaub. Green Chem., 23, 8169 (2021); https://doi.org/10.1039/C8GC01356J
268.
S.Handa, J.C.Fennewald, B.H.Lipshutz. Angew. Chem., 126, 3500 (2014); https://doi.org/10.1002/ange.201310634
269.
S.Mattiello, M.Rooney, A.Sanzone, P.Brazzo, M.Sassi, L.Beverina. Org. Lett., 19, 654 (2017);
https://doi.org/10.1021/acs.orglett.6b03817
270.
A.Sanzone, S.Mattiello, G.M.Garavaglia, A.M.Calascibetta, C.Ceriani, M.Sassi, L.Beverina. Green. Chem., 21, 4400 (2019); https://doi.org/10.1039/C9GC01071H
271.
B.S.Takale, R.R.Thakore, F.Y.Kong, B.H.Lipshutz. Green Chem., 21, 6258 (2019); https://doi.org/10.1039/C9GC03495A
272.
Y.Era, J.A.Dennis, S.Wallace, L.E.Horsfall. Green Chem., 23, 8886 (2021); https://doi.org/10.1039/D1GC02392F
273.
P.Slavik, D.W.Kurka, D.K.Smith. Chem. Sci., 9, 8673 (2018); https://doi.org/10.1039/C8SC04561E
274.
J.Li, P.Huo, J.Zheng, X.Zhou, W.Liu. RSC Adv., 8, 24231 (2018); https://doi.org/10.1039/C8RA03754J
275.
A.Iben Ayad, C.Belda Marín, E.Colaco, C.Lefevre, C.Méthivier, A.Ould Driss, J.Landoulsi, E.Guénin. Green Chem., 21, 6646 (2019); https://doi.org/10.1039/C9GC02546D
276.
P.Tiana, R.Tong. Green Chem., 25, 1345 (2023);
https://doi.org/10.1039/D2GC04428E
277.
S.Asadi, R.Sedghi, M.M.Heravi. Catal. Lett., 147, 2045 (2017); https://doi.org/10.1007/s10562-017-2089-2
278.
B.F.Mohazzab, B.Jaleh, Z.Issaabadi, M.Nasrollahzadeh, R.S.Varma. Green Chem., 21, 3319 (2019);
https://doi.org/10.1039/C9GC00889F
279.
A.B.Wood, K.Y.Nandiwale, Y.Mo, B.Jin, A.Pomberger, V.L.Schultz, F.Gallou, K.F.Jensen, B.H.Lipshutz. Green Chem., 22, 3441 (2020); https://doi.org/10.1039/D0GC00378F
280.
A.B.Wood, S.Plummer, R.I.Robinson, M.Smith, J.Chang, F.Gallou, B.H.Lipshutz. Green Chem., 23, 7724 (2021); https://doi.org/10.1039/D1GC02461B
281.
M.K.Das, J.A.Bobb, A.A.Ibrahim, A.Lin, K.M.AbouZeid, M.S.El-Shall. Appl. Mater. Interfaces, 12, 23844 (2020); https://doi.org/10.1021/acsami.0c03331
282.
G.Xiong, X.-L.Chen, L.-X.You, B.-Y.Ren, F.Ding, I.Dragutan, V.Dragutan, Y.-G.Sun. J. Catal., 361, 116 (2018);
https://doi.org/10.1016/j.jcat.2018.02.026
283.
J.-Q.Liu, X.-X.Gou, Y.-F.Han. Chem. – Asian J., 13, 2257 (2018); https://doi.org/10.1002/asia.201800583
284.
R.Ma, P.Yang, Y.Ma, F.Bian. ChemCatChem, 10, 1446 (2018); https://doi.org/10.1002/cctc.201701693
285.
Q.Zhang, Z.Mao, K.Wang, N.T.S.Phan, F.Zhang. Green Chem., 22, 3239 (2020); https://doi.org/10.1039/D0GC00833H
286.
M.Blanco, D.Mosconi, C.Tubaro, A.Biffis, D.Badocco, P.Pastore, M.Otyepka, A.Bakandritsos, Z.Liu, W.Ren, S.Agnoli, G.Granozzi. Green Chem., 21, 5238 (2019);
https://doi.org/10.1039/C9GC01436E
287.
J.Yang, Y.Wu, X.Wu, W.Liu, Y.Wanga, J.Wang. Green Chem., 21, 5267 (2019); https://doi.org/10.1039/C9GC01993F
288.
J.-C.Wang, C.-X.Liu, X.Kan, X.-W.Wu, J.-L.Kan, Y.-B.Dong. Green Chem., 22, 1150 (2020);
https://doi.org/10.1039/C9GC03718G
289.
N.Esteban, M.L.Ferrer, C.O.Ania, J.G.de la Campa, Á.E.Lozano, C.Álvarez, J.A.Miguel. Appl. Mater. Interfaces, 12, 56974 (2020); https://doi.org/10.1021/acsami.0c16184
290.
H.Peng, X.Zhang, V.Papaefthimiou, C.Pham-Huu, V.Ritleng. Green Chem., 25, 264 (2023);
https://doi.org/10.1039/D2GC03283J
291.
A.Mohan, L.Rout, A.M.Thomas, J.Peter, S.Nagappan, S.Parambadath, C.-S.Ha. RSC Adv., 10, 28193 (2020);
https://doi.org/10.1039/D0RA05786J
292.
C.P.Grandini, C.R.Schmitt, F.A.Duarte, D.S.Rosa, C.H.Rosa, G.R.Rosa. Environ. Sci. Pollut. Res., 30, 6068 (2023);
https://doi.org/10.1007/s11356-022-22616-6
293.
S.S.Soltani, R.Taheri-Ledari, S.M.F.Farnia, A.Maleki, A.Foroumadi. RSC Adv., 10, 23359 (2020);
https://doi.org/10.1039/D0RA04521G
294.
V.Kandathil, M.Kempasiddaiah, B.S.Sasidhar, S.A.Patil. Carbohydr. Polym., 223, 115060 (2019);
https://doi.org/10.1016/j.carbpol.2019.115060
295.
T.Baran. Carbohydr. Polym., 195, 45 (2018);
https://doi.org/10.1016/j.carbpol.2018.04.064
296.
A.Shaabani, S.E.Hooshmand. Ultrason. Sonochem., 40, 84 (2018); https://doi.org/10.1016/j.ultsonch.2017.06.030
297.
S.V.Sancheti, P.R.Gogate. Ultrason. Sonochem., 40, 30 (2018); https://doi.org/10.1016/j.ultsonch.2017.01.037
298.
H.Veisi, A.Mirzaei, P.Mohammadi. RSC Adv., 9, 41581 (2019); https://doi.org/10.1039/C9RA08809A
299.
G.Clavé, F.Pelissier, S.Campidelli, C.Grison. Green Chem., 19, 4093 (2017); https://doi.org/10.1039/C7GC01672G
300.
I.Favier, D.Pla, M.Gomez. Chem. Rev., 120, 1146 (2020); https://doi.org/10.1021/acs.chemrev.9b00204
301.
Y.Tian, J.Wang, X.Cheng, K.Liu, T.Wu, X.Qiu, Z.Kuang, Z.Li, J.Bian. Green Chem., 22, 1338 (2020);
https://doi.org/10.1039/C9GC04051J
302.
F.Ferlin, D.Sciosci, F.Valentini, J.Menzio, G.Cravotto, K.Martina, L.Vaccaro. Green Chem., 23, 7210 (2021);
https://doi.org/10.1039/D1GC02490F
303.
Y.Monguchi, F.Wakayama, S.Ueda, R.Ito, H.Takada, H.Inoue, A.Nakamura, Y.Sawama, H.Sajiki. RSC Adv., 7, 1833 (2017); https://doi.org/10.1039/C6RA24769E
304.
L.Yu, Z.Han, Y.Ding. Org. Process Res. Dev., 20, 2124 (2016); https://doi.org/10.1021/acs.oprd.6b00322
305.
S.Pradhan, S.Dutta, R.P.John. New J. Chem., 40, 7140 (2016); https://doi.org/10.1039/C5NJ03658E
306.
R.G.Kalishomi, S.Rostamizadeh, F.Nouri, A.Khazaei. Heliyon, 6, e04946 (2020);
https://doi.org/10.1016/j.heliyon.2020.e04946
307.
M.N.Shaikh, M.A.Aziz, A.Helal, A.N.Kalanthoden, Z.H.Yamani. ChemistrySelect, 2, 9052 (2017);
https://doi.org/10.1002/slct.201701270
308.
A.Zhou, R.-M.Guo, J.Zhou, Y.Dou, Y.Chen, J.-R.Li. ACS Sustainable Chem. Eng., 6, 2103 (2018);
https://doi.org/10.1021/acssuschemeng.7b03525
309.
Y.L.Wei, Y.Li, Y.Q.Chen, Y.Dong, J.J.Yao, X.Y.Han, Y.B.Dong. Inorg. Chem., 57, 4379 (2018);
https://doi.org/10.1021/acs.inorgchem.7b03271
310.
H.Zhang, M.Zhou, L.Xiong, Z.He, T.Wang, Y.Xu, K.Huang. J. Phys. Chem. C, 121, 12771 (2017);
https://doi.org/10.1021/acs.jpcc.7b02425
311.
M.Thomas, M.U.D.Sheikh, D.Ahirwar, M.Bano, F.Khan. J. Colloid Interface Sci., 505, 115 (2017);
https://doi.org/10.1016/j.jcis.2017.05.051
312.
A.Mohammadinezhad, B.Akhlaghinia. Green Chem., 19, 5625 (2017); https://doi.org/10.1039/C7GC02647A
313.
S.Sobhani, H.H.Moghadam, J.Skibsted, J.M.Sansano. Green Chem., 22, 1353 (2020); https://doi.org/10.1039/C9GC03455B
314.
T.Tamoradi, H.Veisi, B.Karmakar, J.Gholami. Mater. Sсi. Eng. C, 107, 110260 (2020);
https://doi.org/10.1016/j.msec.2019.110260
315.
C.Wang, L.Salmon, R.Ciganda, L.Yate, S.Moya, J.Ruiz, D.Astruc. Chem. Commun., 53, 644 (2017);
https://doi.org/10.1039/C6CC08401J
316.
S.Thawarkar, N.D.Khupse, A.Kumar. ChemPhysChem, 17, 1006 (2016) https://doi.org/10.1002/cphc.201501156
317.
P.Akbarzadeh, N.Koukabi, E.Kolvari. Mol. Divers., 24, 1125 (2020); https://doi.org/10.1007/s11030-019-10016-x
318.
A.-F.Villamizar-Mogotocoro, S.-M.Bonilla-Castañeda, V.V.Kouznetsov. Green Chem., 24, 7996 (2022);
https://doi.org/10.1039/D2GC02548E
319.
A.P.Thankachan, T.G.Abi, K.S.Sindhu, G.Anilkumar. ChemistrySelect, 1, 3405 (2016);
https://doi.org/10.1002/slct.201600668
320.
D.P.Satpute, G.N.Vaidya, S.K.Lokhande, S.D.Shinde, S.M.Bhujbal, D.R.Chatterjee, P.Rana, A.Venkatesh, M.Nagpure, D.Kumar. Green Chem., 23, 6273 (2021);
https://doi.org/10.1039/D1GC01983J
321.
I.P.Beletskaya, V.P.Ananikov. Chem. Rev., 122, 16110 (2022); https://doi.org/10.1021/acs.chemrev.1c00836
322.
L.Cases, P.Adler, F.Pelissier, S.Diliberto, C.Boulanger, C.Grison. RSC Adv., 11, 28085 (2021);
https://doi.org/10.1039/D1RA04478H
323.
P.Elumalai, H.Mamlouk, W.Yiming, L.Feng, S.Yuan, H.-C.Zhou, S.T.Madrahimov. ACS Appl. Mater. Interfaces, 10, 41431 (2018); https://doi.org/10.1021/acsami.8b16136
324.
S.Handa, E.D.Slack, B.H.Lipshutz. Angew. Chem., Int. Ed., 54, 11994 (2015); https://doi.org/10.1002/anie.201505136
325.
F.Kiani, H.Naeimi. Ultrason. Sonochem., 48, 267 (2018); https://doi.org/10.1016/j.ultsonch.2018.06.001
326.
H.M.Abd El-Lateef, A.R.Sayed, M.S.S.Adam. Appl. Organomet. Chem., 33, e4987 (2019);
https://doi.org/10.1002/aoc.4987
327.
T.Wei, T.Zhang, B.Huang, Y.Tuo, M.Cai. Appl. Organomet. Chem., 29, 846 (2015); https://doi.org/10.1002/aoc.3394
328.
F.M.Moghaddam, G.Tavakoli, H.R.Rezvani. Catal. Commun., 60, 82 (2015); https://doi.org/10.1016/j.catcom.2014.11.018
329.
K.Junge, G.Wienhöfer, M.Beller, A.Tlili, G.Evano, M.Taillefer, R.Kempe, C.Malbertz, J.Klankermayer. In Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes. (3rd Edn). (Eds B.Cornils, W.A.Herrmann, M.Beller, R.Paciello). (Hoboken, NJ: Wiley, 2017). Ch. 10;
https://doi.org/10.1002/9783527651733.ch10
330.
K.H.Shaughnessy, E.Ciganek, R.B.De Vasher, S.E.Denmark. Copper-Catalyzed Amination of Aryl and Alkenyl Electrophiles. (Hoboken, NJ: Wiley, 2017)
331.
I.P.Beletskaya, A.V.Cheprakov. Organometallics, 31, 7753 (2012); https://doi.org/10.1021/om300683c
332.
F.Monnier, M.Taillefer. Angew. Chem., Int. Ed., 48, 6954 (2009); https://doi.org/10.1002/anie.200804497
333.
A.A.Kelkar, N.M.Patil, R.V.Chaudhari. Tetrahedron Lett., 43, 7143 (2002); https://doi.org/10.1016/S0040-4039(02)01708-2
334.
X.Li, D.Yang, Y.Jiang, H.Fu. Green Chem., 12, 1097 (2010); https://doi.org/10.1039/c002172e
335.
C.A.Anderson, P.G.Taylor, M.A.Zeller, S.C.Zimmerman. J. Org. Chem., 75, 4848 (2010);
https://doi.org/10.1021/jo100476x
336.
J.Gao, S.Bhunia, K.Wang, L.Gan, S.Xia, D.Ma. Org. Lett., 19, 2809 (2017); https://doi.org/10.1021/jo100476x
337.
I.P.Beletskaya, A.D.Averin. Russ. Chem. Rev., 90, 1359 (2021); https://doi.org/10.1070/RCR4999
338.
X.Ge, S.Zhang, X.Chen, X.Liu, C.Qian. Green Chem., 21, 2771 (2019); https://doi.org/10.1039/C9GC00964G
339.
J.Das, S.Ta, N.Salam, S.Das, S.Ghosha, D.Das. RSC Adv., 13, 13195 (2023); https://doi.org/10.1039/D3RA00702B
340.
A.K.Srivastava, C.Sharma, R.K.Joshi. Green Chem., 22, 8248 (2020); https://doi.org/10.1039/D0GC02819C
341.
Z.Khorsandi, A.R.Hajipour, M.R.Sarfjoo, R.S.Varma. Green Chem., 23, 5222 (2021); https://doi.org/10.1039/D1GC00518A
342.
F.M.Moghaddam, G.Tavakoli, A.Moafi, V.Saberi, H.R.Rezvani. ChemCatChem, 6, 3474 (2014);
https://doi.org/10.1002/cctc.201402556
343.
S.Yadav, A.Jain, P.Malhotra. Green Chem., 21, 937 (2019); https://doi.org/10.1039/C8GC03303J
344.
X.Ge, W.Song, X.He, J.Yang, C.Qian, S.Zhou, X.Liu. Green Chem., 23, 6322 (2021); https://doi.org/10.1039/D1GC01659H
345.
R.Y.Liu, J.M.Dennis, S.L.Buchwald. J. Am. Chem. Soc., 142, 4500 (2020); https://doi.org/10.1021/jacs.0c00286
346.
M.Islam, S.Mondal, P.Mondal, A.S.Roy, K.Tuhina, M.Mobarok, S.Paul, N.Salam, D.Hossain. Catal. Lett., 141, 1171 (2011); https://doi.org/10.1007/s10562-011-0606-2
347.
S.Bagheri, F.Pazoki, I.Radfar, A.Heydari. Appl. Organomet. Chem., 34, e5447 (2020); https://doi.org/10.1002/aoc.5447
348.
A.R.Hajipour, M.Check, Z.Khorsandi. Appl. Organomet. Chem., 31, e3769 (2017); https://doi.org/10.1002/aoc.3769
349.
P.J.A.Joseph, S.Priyadarshini, M.L.Kantam, H.Maheswaran. Catal. Sci. Technol., 1, 234 (2011);
https://doi.org/10.1039/c0cy00074d
350.
X.Liu, S.Chang, X.Chen, X.Ge, C.Qian. New J. Chem., 42, 16013 (2018); https://doi.org/10.1039/C8NJ02677G
351.
N.F.F.Nathel, J.Kim, L.Hie, X.Jiang, N.K.Garg. ACS Catal., 4, 3289 (2014); https://doi.org/10.1021/cs501045v
352.
Y.Feng, H.Luo, F.Yu, Q.Liao, L.Lin. Green Chem., 25, 2361 (2023); https://doi.org/10.1039/D2GC04630J
353.
T-Yu.Yu, H.Pang, Y.Cao, F.Gallou, B.H.Lipshutz. Angew. Chem., 133, 3752 (2021);
https://doi.org/10.1002/ange.202013017
354.
D.M.T.Chan. Tetrahedron Lett., 37, 9013 (1996);
https://doi.org/10.1016/S0040-4039(96)02116-8
355.
P.Y.S.Lam, C.G.Clark, S.Saubern, J.Adams, M.P.Winters, D.M.T.Chan, A.Combs Tetrahedron Lett., 39, 2941 (1998); https://doi.org/10.1016/S0040-4039(98)00504-8
356.
D.A.Evans, J.L.Katz, T.R.West. Tetrahedron Lett., 39, 2937 (1998); https://doi.org/10.1016/S0040-4039(98)00502-4
357.
N.Sun, K.Zheng, M.Zhang, G.Zheng, L.Jin, B.Hu, Z.Shen, X.Hu. Green Chem., 25, 2782 (2023);
https://doi.org/10.1039/D3GC00051F
358.
Y.Han, M.Zhang, Y.Q.Zhang, Z.H.Zhang. Green Chem., 20, 4891 (2018); https://doi.org/10.1039/C8GC02611D
359.
N.Seyedi, M.S.Nejad, K.Saidi, H.Sheibani. Appl. Organomet. Chem., 34, e5307 (2019); https://doi.org/10.1002/aoc.5307
360.
S.Gajare, M.Jagadale, A.Naikwade, P.Bansode, G.Rashinkar. Appl. Organomet. Chem., 33, e4915 (2019);
https://doi.org/10.1002/aoc.4915
361.
A.Mittal, S.Kumari, Parmanand, D.Yadav, S.K.Sharma. Appl. Organomet. Chem., 34, 5362 (2020);
https://doi.org/10.1002/aoc.5362
362.
A.Kumar, S.Layek, B.Agrahari, S.Kujur, D.D.Pathak. ChemistrySelect, 4, 1337 (2019);
https://doi.org/10.1002/slct.201803113
363.
R.K.Borah, P.K.Raul, A.Mahanta, A.Shchukarev, J.-P.Mikkola, A.J.Thakur. Synlett, 28, 1177 (2017);
https://doi.org/10.1055/s-0036-1588741
364.
S.K.Das, P.Deka, M.Chetia, R.C.Deka, P.Bharali, U.Bora. Catal. Lett., 148, 547 (2018);
https://doi.org/10.1007/s10562-017-2278-z
365.
A.Khosravi, J.Mokhtari, M.R.Naimi-Jamal, S.Tahmasebi, L.Panahi. RSC Adv., 7, 46022 (2017);
https://doi.org/10.1039/C7RA09772G
366.
A.Muñoz, P.Leo, G.Orcajo, F.Martínez, G.Calleja. ChemCatChem, 11, 3376 (2019);
https://doi.org/10.1002/cctc.201900906
367.
O.Amadine, Y.Essamlali, A.Amedlous, M.Zahouily. RSC Adv., 9, 36471 (2019); https://doi.org/10.1039/C9RA06991G
368.
M.Sarmah, A.Dewan, P.K.Boruah, M.R.Das, U.Bora. Appl. Organomet. Chem., 34, e5554 (2020);
https://doi.org/10.1002/aoc.5554
369.
B.Jamwa, M.Kaur, H.Sharma, C.Khajuria, S.Paul, J.H.Clark. New J. Chem., 43, 4919 (2019);
https://doi.org/10.1039/C8NJ05050C
370.
T.W.Lyons, M.S.Sanford. Chem. Rev., 110, 1147 (2010); https://doi.org/10.1021/cr900184e
371.
J.Wencel-Delord, T.Dröge, F.Liu, F.Glorius. Chem. Soc. Rev., 40, 4740 (2011); https://doi.org/10.1039/c1cs15083a
372.
N.Kuhl, M.N.Hopkinson, J.Wencel-Delord, F.Glorius. Angew. Chem., Int. Ed., 51, 10236 (2012);
https://doi.org/10.1002/anie.201203269
373.
H.-Q.Do, O.Daugulis. J. Am. Chem. Soc., 129, 12404 (2007); https://doi.org/10.1021/ja075802+
374.
R.J.Phipps, N.P.Grimster, M.J.Gaunt. J. Am. Chem. Soc., 130, 8172 (2008) https://doi.org/10.1021/ja801767s
375.
Y.Cheng, X.Gu, P.Li. Org. Lett., 15, 2664 (2013);
https://doi.org/10.1021/ol400946k
376.
L.Ackermann. Org. Lett., 7, 3123 (2005);
https://doi.org/10.1021/ol051216e
377.
Y.Mohr, G.Hisler, L.Grousset, Y.Roux, E.A.Quadrelli, F.M.Wisser, J.Canivet. Green Chem., 22, 3155 (2020);
https://doi.org/10.1039/D0GC00917B
378.
F.Ferlin, I.Anastasiou, L.Carpisassi, L.Vaccaro. Green Chem., 23, 6576 (2021); https://doi.org/10.1039/D1GC01870A
379.
F.Ferlin, A.Zangarelli, S.Lilli, S.Santoro, L.Vaccaro. Green Chem., 23, 490 (2021); https://doi.org/10.1039/D0GC03351K
380.
M.T.Findlay, A.S.Hogg, J.J.Douglas, I.Larrosa. Green Chem., 25, 2394 (2023); https://doi.org/10.1039/D2GC03860A
381.
E.T.Nadres, O.Daugulis. J. Am. Chem. Soc., 134, 7 (2012); https://doi.org/10.1021/ja210959p
382.
X.Wang, Y.Jin, Y.Zhao, L.Zhu, H.Fu. Org. Lett., 14, 452 (2012); https://doi.org/10.1021/ol202884z
383.
X.Liu, H.Sheng, Y.Zhou, Q.Song. Chem. Commun., 56, 1665 (2020); https://doi.org/10.1039/C9CC09493H
384.
T.Morofuji, G.Ikarashi, N.Kano. Org. Lett., 22, 2822 (2020); https://doi.org/10.1021/acs.orglett.0c00822
385.
J.Roane, O.Daugulis. J. Am. Chem. Soc., 138, 4601 (2016); https://doi.org/10.1021/jacs.6b01117
386.
M.Shang, S.-Z.Sun, H.-X.Dai, J.-Q.Yu. J. Am. Chem. Soc., 136, 3354 (2014); https://doi.org/10.1021/ja412880r
387.
H.-M.Vu, J.-Y.Yong, F.-W.Chen, X.-Q.Li, G.-Q.Shi. J. Org. Chem., 85, 4963 (2020);
https://doi.org/10.1021/acs.joc.0c00138
388.
Y.Dong, S.Sun, J.-t.Yu, J.Cheng. Tetrahedron Lett., 60, 1349 (2019); https://doi.org/10.1016/j.tetlet.2019.03.069
389.
H.Xiong, G.Gu, S.Zhang, F.Lu, Q.Ji, L.Liu, P.Ma, G.Yang, W.Hou, H.Xu. Chem. Commun., 56, 4692 (2020);
https://doi.org/10.1039/D0CC01647K
390.
H.-B.Xu, J.-H.Yang, X.-Y.Chai, Y.-Y.Zhu, L.Dong. Org. Lett., 22, 2060 (2020); https://doi.org/10.1021/acs.orglett.0c00520
391.
J.Sherwood, J.H.Clark, I.J.S.Fairlamb, J.M.Slattery. Green Chem., 21, 2164 (2019); https://doi.org/10.1039/C9GC00617F
392.
K.L.Wilson, J.Murray, C.Jamieson, A.J.B.Watson. Synlett, 29, 650 (2018); https://doi.org/10.1055/s-0036-1589143
393.
M.O.Sydnes. Curr. Green Chem., 6, 96 (2019);
https://doi.org/10.2174/2213346106666190411151447
394.
J.Sherwood. Beilstein J. Org. Chem., 16, 1001 (2020);
https://doi.org/10.3762/bjoc.16.89
395.
X.Marset, A.Khoshnood, L.Sotorríos, E.Gómez-Bengoa, D.A.Alonso, D.J.Ramón. ChemCatChem, 9, 1269 (2017); https://doi.org/10.1002/cctc.201601544
396.
F.Ferlin, V.Trombettoni, L.Luciani, S.Fusi, O.Piermatti, S.Santoro, L.Vaccaro. Green Chem., 20, 1634 (2018);
https://doi.org/10.1039/C8GC00287H
397.
G.A.Edwards, M.A.Trafford, A.E.Hamilton, A.M.Buxton, M.C.Bardeaux, J.M.Chalker. J. Org. Chem., 79, 2094 (2014); https://doi.org/10.1021/jo402799t
398.
T.Fantoni, S.Bernardoni, A.Mattellone, G.Martelli, L.Ferrazzano, P.Cantelmi, D.Corbisiero, A.Tolomelli, W.Cabri, F.Vacondio, F.Ferlenghi, M.Mor, A.Ricci. ChemSusChem, 14, 2591 (2021);
https://doi.org/10.1002/cssc.202100623
399.
A.Gevorgyan, K.H.Hopmann, A.Bayer. Green Chem., 23, 7219 (2021); https://doi.org/10.1039/D1GC02311J
400.
R.A.Sheldon. Green Chem., 18, 3180 (2016);
https://doi.org/10.1039/C6GC90040B
401.
P.S.Gribanov, G.A.Chesnokov, P.B.Dzhevakov, N.Y.Kirilenko, S.A.Rzhevskiy, A.A.Ageshina, M.A.Topchiy, M.V.Bermeshev, A.F.Asachenko, M.S.Nechaev. Mendeleev Commun., 29, 147 (2019);
https://doi.org/10.1016/j.mencom.2019.03.009
402.
G.A.Chesnokov, P.S.Gribanov, M.A.Topchiy, L.I.Minaeva, A.F.Asachenko, M.S.Nechaev E.V.Bermesheva, M.V.Bermeshev. Mendeleev Commun., 27, 618 (2017);
https://doi.org/10.1016/j.mencom.2017.11.027
403.
S.A.Rzhevskiy, M.A.Topchiy, V.N.Bogachev, L.I.Minaeva, I.R.Cherkashchenko, K.V.Lavrov, G.K.Sterligov, M.S.Nechaev, A.F.Asachenko. Mendeleev Commun., 31, 409 (2021); https://doi.org/10.1016/j.mencom.2021.05.042
404.
T.Baran, I.Sargin, M.Kaya, P.Mulerčikas, S.Kazlauskaitė, A.Menteş. Chem. Eng. J., 331, 102 (2018);
https://doi.org/10.1016/j.cej.2017.08.104
405.
S.Grätz, B.Wolfrum, L.Borchardt. Green Chem., 19, 2973 (2017); https://doi.org/10.1039/C7GC00693D
406.
X.Li, Y.Liu, L.Zhang, Y.Dong, Q.Liu, D.Zhang, L.Chen, Z.Zhao, H.Liu. Green Chem., 24, 6026 (2022);
https://doi.org/10.1039/D2GC01427K
407.
A.C.Flick, C.A.Leverett, H.X.Ding, E.McInturff, S.J.Fink, S.Mahapatra, D.W.Carney, E.A.Lindsey, J.C.DeForest, S.P.France, S.Berritt, S.V.Bigi-Botterill, T.S.Gibson, Y.Liu, C.J.O’Donnell. J. Med. Chem., 64, 3604 (2021);
https://doi.org/10.1021/acs.jmedchem.1c00208
408.
Chirality in Drug Research. Vol. 33. (Eds E.Francotte, W.Lindner). (Weinheim: Wiley-VCH, 2006). 351 p.
409.
K.M.Koeller, C.H.Wong. Nature, 409, 232 (2001);
https://doi.org/10.1038/35051706
410.
U.Hanefeld, F.Hollmann, C.E.Paul. Chem. Soc. Rev., 51, 594 (2022); https://doi.org/10.1039/D1CS00100K
411.
L.Süsse, B.M.Stoltz. Chem. Rev., 121, 4084 (2021);
https://doi.org/10.1021/acs.chemrev.0c01115
412.
O.Pàmies, J.Margalef, S.Cañellas, J.James, E.Judge, P.J.Guiry, C.Moberg, J.-E.Bäckvall, A.Pfaltz, M.A.Pericàs, M.Diéguez. Chem. Rev., 121, 4373 (2021);
https://doi.org/10.1021/acs.chemrev.0c00736
413.
Asymmetric Organocatalysis. Vols 1, 2. (Eds B.List, K.Maruoka). (Stuttgard, New York: Georg Thieme Verlag KG, 2012)
414.
S.Ardevines, E.Marqués-López, R.P.Herrera. Catalysts, 12, 101 (2022); https://doi.org/10.3390/catal12010101
415.
O.G.Mancheno, M.Waser. Eur. J. Org. Chem., 26, e202200950 (2023); https://doi.org/10.1002/ejoc.202200950
416.
A.Antenucci, S.Dughera, P.Renzi. ChemSusChem, 14, 2785 (2021); https://doi.org/10.1002/cssc.202100573
417.
S.Meninno. ChemSusChem, 13, 439 (2020);
https://doi.org/10.1002/cssc.201902500
418.
B.Han, X.-H.He, Y.-Q.Liu, G.He, C.Peng, J.-L.Li. Chem. Soc. Rev., 50, 1522 (2021); https://doi.org/10.1039/D0CS00196A
419.
A.J.Burke. Exp. Opin. Drug Discov., 18, 37 (2023);
https://doi.org/10.1080/17460441.2023.2160437
420.
E.Reyes, L.Prieto, A.Milelli. Molecules, 28, 271 (2023); https://doi.org/10.3390/molecules28010271
421.
H.Gröger, F.Gallou, B.H.Lipshutz. Chem. Rev., 123, 5262 (2023); https://doi.org/10.1021/acs.chemrev.2c00416
422.
M.P.van der Helm, B.Klemm, R.Eelkema. Nat. Rev. Chem., 3, 491 (2019); https://doi.org/10.1038/s41570-019-0116-0
423.
C.Jimeno. Org. Biomol. Chem., 14, 6147 (2016);
https://doi.org/10.1039/C6OB00783J
424.
M.H. Aukland, B.List. Pure Appl. Chem., 93, 1371 (2021); https://doi.org/10.1515/pac-2021-0501
425.
A.S.Kucherenko, S.G.Zlotin. Russ. Chem. Bull., 72, 42 (2023); https://doi.org/10.1007/s11172-023-3713-5
426.
F.Gomollón-Bel. Chem. Int., 41, 12 (2019);
https://doi.org/10.1515/ci-2019-0203
427.
C.O.Kappe, J.Mack, C.Bolm. J. Org. Chem., 86, 14242 (2021); https://doi.org/10.1021/acs.joc.1c02326
428.
C.Rodríguez-Escrich, M.A.Pericàs. Chem. Rec., 19, 1872 (2019); https://doi.org/10.1002/tcr.201800097
429.
Catalyst Immobilization: Methods and Applications.
(Eds M.Benaglia, A.Puglisi). (Wiley-VCH Verlag GmbH & Co. KGaA, 2020)
430.
F.G.Finelli, L.S.M.Miranda, R.O.M.A.de Souza. Chem. Commun., 51, 3708 (2015);
https://doi.org/10.1039/C4CC08748H
431.
I.Atodiresei, C.Vila, M.Rueping. ACS Catal., 5, 1972 (2015); https://doi.org/10.1021/acscatal.5b00002
432.
W.Yao, E.A.Bazan-Bergamino, M.-Y.Ngai. ChemCatChem, 14, e202101292 (2022);
https://doi.org/10.1002/cctc.202101292
433.
F.Medici, S.Resta, S.Andolina, M.Benaglia. Catalysts, 13, 944 (2023); https://doi.org/10.3390/catal13060944
434.
Y.Hayashi. Chem. Sci., 7, 866 (2016);
https://doi.org/10.1039/C5SC02913A
435.
Y.Hayashi. J. Org. Chem., 86, 1 (2021);
https://doi.org/10.1021/acs.joc.0c01581
436.
M.Bortolami, F.Leonelli, M.Feroci, F.Vetica. Curr. Org. Chem., 25, 1321 (2021);
https://doi.org/10.2174/1385272825666210518124845
437.
M.Cortes-Clerget, J.Yu, J.R.A.Kincaid, P.Walde, F.Gallou, B.H.Lipshutz. Chem. Sci., 12, 4237 (2021);
https://doi.org/10.1039/D0SC06000C
438.
D.A.Sable, K.S.Vadagaonkar, A.R.Kapdi, B.M.Bhanage. Org. Biomol. Chem., 19, 5725 (2021);
https://doi.org/10.1039/D1OB00755F
439.
M.Miele, V.Pillari, V.Pace, A.R.Alcántara, G.de Gonzalo. Molecules, 27, 6701 (2022);
https://doi.org/10.3390/molecules27196701
440.
N.Fanjul-Mosteirín, V.del Amo. Tetrahedron, 84, 131967 (2021); https://doi.org/10.1016/j.tet.2021.131967
441.
M.Tavakolian, S.Vahdati-Khajeh, S.Asgari. ChemCatChem, 11, 2943 (2019); https://doi.org/10.1002/cctc.201900354
442.
I.N.Egorov, S.Santra, D.S.Kopchuk, I.S.Kovalev, G.V.Zyryanov, A.Majee, B.C.Ranu, V.L.Rusinova, O.N.Chupakhin. Green Chem., 22, 302 (2020);
https://doi.org/10.1002/cctc.201900354
443.
C.G.Avila-Ortiz, M.Pérez-Venegas, J.Vargas-Caporali, E.Juaristi. Tetrahedron Lett., 60, 1749 (2019);
https://doi.org/10.1016/j.tetlet.2019.05.065
444.
D.Krištoíková, V.Modrocká, M.Mečiarová, R.Šebesta. ChemSusChem, 13, 2828 (2020);
https://doi.org/10.1002/cssc.202000137
445.
M.Sihtmae, E.Silm, K.Kriis, A.Kahru, T.Kanger. ChemSusChem, 15, e202201045 (2022);
https://doi.org/10.1002/cssc.202201045
446.
T.Akiyama, K.Mori. Chem. Rev., 115, 9277 (2015);
https://doi.org/10.1021/acs.chemrev.5b00041
447.
B.Tan, D.Zhu, L.Zhang, P.J.Chua, X.Zeng, G.Zhong. Chem. – Eur. J., 16, 3842 (2010);
https://doi.org/10.1002/chem.200902932
448.
N.Umekubo, Y.Suga, Y.Hayashi. Chem. Sci., 11, 1205 (2020); https://doi.org/10.1039/C9SC05824A
449.
N.Umekubo, R.Iwata, Y.Hayashi. Chem. Lett., 49, 867 (2020); https://doi.org/10.1246/cl.200297
450.
N.Umekubo, Y.Hayashi. Org. Lett., 22, 9365 (2020);
https://doi.org/10.1021/acs.orglett.0c03616
451.
S.Koshino, E.Kwon, Y.Hayashi. Eur. J. Org. Chem., 5629 (2018); https://doi.org/10.1002/ejoc.201800910
452.
Y.Hayashi, S.Koshino, K.Ojima, E.Kwon. Angew. Chem., Int. Ed., 56, 11812 (2017); https://doi.org/10.1002/anie.201706046
453.
Y.Hayashi, H.A.Salazar, S.Koshino. Org. Lett., 23, 6654 (2021); https://doi.org/10.1021/acs.orglett.1c02196
454.
Y.Hayashi. Acc. Chem. Res., 54, 1385 (2021);
https://doi.org/10.1021/acs.accounts.0c00803
455.
V.Maurya, M.S.Kutwal, C.Appayee. Org. Lett., 23, 1566 (2021); https://doi.org/10.1021/acs.orglett.0c04277
456.
J.-B.Wen, D.-M.Du. Org. Biomol. Chem., 18, 1647 (2020); https://doi.org/10.1039/C9OB02663K
457.
X.-Q.Hou, J.-B.Wen, L.Yan, D.-M.Du. Org. Biomol. Chem., 19, 7181 (2021); https://doi.org/10.1039/D1OB01223A
458.
C.Qian, M.Liu, J.Sun, P.Li. Org. Chem. Front., 9, 1234 (2022); https://doi.org/10.1039/D1QO01864G
459.
F.-J.Meng, B.-R.Shao, M.K.Velopolcek, X.Guo, G.-S.Feng, L.Shi. Org. Biomol. Chem., 19, 10570 (2021);
https://doi.org/10.1039/D1OB02079J
460.
E.V.Filatova, O.V.Turova, I.V.Kuchurov, A.A.Kostenko, A.G.Nigmatov, S.G.Zlotin. J. Supercrit. Fluids, 109, 35 (2016); https://doi.org/10.1016/j.supflu.2015.11.004
461.
E.V.Filatova, O.V.Turova, A.G.Nigmatov, S.G.Zlotin. Tetrahedron, 74, 157 (2018);
https://doi.org/10.1016/j.tet.2017.11.057
462.
R.Ivanov, E.Ivanova, V.Merkulov, M.Zharkov, I.Kuchurov, S.Zlotin. Eur. J. Org. Chem., e202300366 (2023);
https://doi.org/10.1021/acssuschemeng.0c04260
463.
D.Krištofíková, M.Mečiarová, E.Rakovský, R.Šebesta. ACS Sustainable Chem. Eng., 8, 14417 (2020);
https://doi.org/10.1021/acssuschemeng.0c04260
464.
C.De Risi, O.Bortolini, A.Brandolese, GrazianoDi Carmine, D.Ragno, A.Massi. React. Chem. Eng., 5, 1017 (2020);
https://doi.org/10.1039/D0RE00076K
465.
T.Yu, Z.Ding, W.Nie, J.Jiao, H.Zhang, Q.Zhang, C.Xue, X.Duan, Y.M.A.Yamada, P.Li. Chem. – Eur. J., 26, 5729 (2020); https://doi.org/10.1002/chem.201905151
466.
L.Vaccaro, D.Lanari, A.Marrocchi, G.Strappaveccia. Green Chem., 16, 3680 (2014); https://doi.org/10.1039/C4GC00410H
467.
S.G.Newman, K.F.Jensen. Green Chem., 15, 1456 (2013); https://doi.org/10.1039/c3gc40374b
468.
M.Guidi, P.H.Seeberger, K.Gilmore. Chem. Soc. Rev., 49, 8910 (2020); https://doi.org/10.1039/C9CS00832B
469.
L.Capaldo, Z.Wen, T.Noël. Chem. Sci., 14, 4230 (2023); https://doi.org/10.1039/D3SC00992K
470.
A.I.Alfano, M.Brindisi, H.Lange. Green Chem., 23, 2233 (2021); https://doi.org/10.1039/D0GC03883K
471.
S.Alcalde, R.Porcar, M.L.De La Puente, G.R.Cumming, C.Mateos, P.Garcia-Losada, C.Anta, J.A.Rincón, E.García-Verdugo. Org. Process Res. Dev., 27, 276 (2023);
https://doi.org/10.1021/acs.oprd.2c00253
472.
S.B.Ötvös, C.O.Kappe. Green Chem., 23, 6117 (2021);
https://doi.org/10.1039/D1GC01615F
473.
S.X.-F.Tang, J.-N.Zhao, Y.-F.Wu, Z.-H.Zheng, C.-F.Ma, Z.-Y.Yu, L.Yun, G.-Z.Liu, Q.-W.Meng. Synth. Commun., 50, 2478 (2020); https://doi.org/10.1080/00397911.2020.1781183
474.
M.Kondo, H.D.P.Wathsala, M.Sako, Y.Hanatani, K.Ishikawa, S.Hara, T.Takaai, T.Washio, S.Takizawa, H.Sasai. Chem. Commun., 56, 1259 (2020);
https://doi.org/10.1039/C9CC08526B
475.
L.Schober, F.Tonin, U.Hanefeld, H.Grӧger. Eur. J. Org. Chem., e202101035 (2022);
https://doi.org/10.1002/ejoc.202101035
476.
L.Schober, S.Ratnam, Y.Yamashita, N.Adebar, M.Pieper, A.Berkessel, V.Hessel, H.Gröger. Synthesis, 51, 1178 (2019); https://doi.org/10.1055/s-0037-1610404
477.
R.Greco, L.Caciolli, A.Zaghi, O.Pandoli, O.Bortolini, A.Cavazzini, C.De Risi, A.Massi. React. Chem. Eng., 1, 183 (2016); https://doi.org/10.1039/C5RE00017C
478.
C.Yue, Y.Yamashita, S.Kobayashi. Green Chem., 23, 1989 (2021); https://doi.org/10.1039/D0GC04202A
479.
S.Qu, S.M.Smith, V.Laina-Martín, R.M.Neyyappadath, M.D.Greenhalgh, A.D.Smith. Angew. Chem., Int. Ed., 59, 16572 (2020); https://doi.org/10.1002/anie.202004354
480.
C.Leonardi, A.Brandolese, L.Preti, O.Bortolini, E.Polo, P.Dambruoso, D.Ragno, G.Di Carmine, A.Massi. Adv. Synth. Catal., 363, 5473 (2021);
https://doi.org/10.1002/adsc.202100757
481.
Y.Hayashi, S.Hattori, S.Koshino. Chem – Asian J., 17, e202200314 (2022); https://doi.org/10.1002/asia.202200314
482.
M.B.Chaudhari, P.Gupta, P.Llanes, L.Zhou, N.Zanda, M.A.Pericàs. Org. Biomol. Chem., 20, 8273 (2022);
https://doi.org/10.1039/D2OB01462A
483.
B.S.Nagy, P.Llanes, M.A.Pericas, C.O.Kappe, S.B.Ötvös. Org. Lett., 24, 1066 (2022);
https://doi.org/10.1021/acs.orglett.1c04300
484.
A.Carlone, L.Bernardi, P.McCormack, T.Warr, S.Oruganti, C.J.Cobley. Org. Process Res. Dev., 25, 2795 (2021);
https://doi.org/10.1021/acs.oprd.1c00394
485.
S.-H.Xiang, B.Tan. Nat. Commun., 11, 3786 (2020);
https://doi.org/10.1038/s41467-020-17580-z
486.
G.E.M.Crisenza, P.Melchiorre. Nat. Commun., 11, 803 (2020); https://doi.org/10.1038/s41467-019-13887-8
487.
L.Candish, K.D.Collins, G.C.Cook, J.J.Douglas, A.Gómez-Suárez, A.Jolit, S.Keess. Chem. Rev., 122, 2907 (2022); https://doi.org/10.1021/acs.chemrev.1c00416
488.
R.Cannalire, S.Pelliccia, L.Sancineto, E.Novellino, G.C.Tron, M.Giustiniano. Chem. Soc. Rev., 50, 766 (2021);
https://doi.org/10.1039/D0CS00493F
489.
K.P.S.Cheung, S.Sarkar, V.Gevorgyan. Chem. Rev., 122, 1543 (2022); https://doi.org/10.1021/acs.chemrev.1c00403
490.
M.J.Genzink, J.B.Kidd, W.B.Swords, T.P.Yoon. Chem. Rev., 122, 1654 (2022);
https://doi.org/10.1021/acs.chemrev.1c00467
491.
M.H.Shaw, J.Twilton, D.W.C.MacMillan. J. Org. Chem., 81, 6898 (2016); https://doi.org/10.1021/acs.joc.6b01449
492.
Y.Yin, Y.Dai, H.Jia, J.Li, L.Bu, B.Qiao, X.Zhao, Z.Jiang. J. Am. Chem. Soc., 140, 6083 (2018);
https://doi.org/10.1021/jacs.8b01575
493.
Y.Dai, S.Liang, G.Zeng, H.Huang, X.Zhao, S.Cao, Z.Jiang. Chem. Sci., 13, 3787 (2022);
https://doi.org/10.1039/D1SC07044D
494.
M.Kong, Y.Tan, X.Zhao, B.Qiao, C.-H.Tan, S.Cao, Z.Jiang, J. Am. Chem. Soc., 143, 4024 (2021);
https://doi.org/10.1021/jacs.1c01073
495.
T.Shao, Y.Li, N.Ma, C.Li, G.Chai, X.Zhao, B.Qiao, Z.Jiang, iScience, 16, 410 (2019);
https://doi.org/10.1016/j.isci.2019.06.007
496.
Y.Li, C.Han, Y.Wang, X.Huang, X.Zhao, B.Qiao, Z.Jiang. J. Am. Chem. Soc., 144, 7805 (2022);
https://doi.org/10.1021/jacs.2c01458
497.
W.Xiong, S.Li, B.Fu, J.Wang, Q.A.Wang, W.Yang, Org. Lett., 21, 4173 (2019); https://doi.org/10.1021/acs.orglett.9b01354
498.
A.Holzl-Hobmeier, A.Bauer, A.V.Silva, S.M.Huber, C.Bannwarth, T.Bach. Nature, 564, 240 (2018);
https://doi.org/10.1038/s41586-018-0755-1
499.
A.Troster, A.Bauer, C.Jandl, T.Bach. Angew. Chem., Int. Ed., 58, 3538 (2019); https://doi.org/10.1002/anie.201814193
500.
R.S.Proctor, P.Chuentragool, A.C.Colgan, R.J.Phipps. J. Am. Chem. Soc., 143, 4928 (2021);
https://doi.org/10.1021/jacs.1c01556
501.
E. Le Saux, D. Ma, P. Bonilla, C. M. Holden, D. Lustosa, P. Melchiorre. Angew. Chem., Int. Ed., 60, 5357 (2021);
https://doi.org/10.1002/anie.202014876
502.
T.H.-F.Wong, D.Ma, R.Di Sanza, P.Melchiorre. Org. Lett., 24, 1695 (2022); https://doi.org/10.1021/acs.orglett.2c00326
503.
M.Silvi, C.Verrier, Y.P.Rey, L.Buzzetti, P.Melchiorre. Nat. Chem., 9, 868 (2017); https://doi.org/10.1038/nchem.2748
504.
L.Wozniak, G.Magagnano, P.Melchiorre. Angew. Chem., Int. Ed., 57, 1068 (2018); https://doi.org/10.1002/anie.201711397
505.
C.Verrier, N.Alandini, C.Pezzetta, M.Moliterno, L.Buzzetti, H.B.Hepburn, A.Vega-Penaloza, M.Silvi, P.Melchiorre. ACS Catal., 8, 1062 (2018);
https://doi.org/10.1021/acscatal.7b03788
506.
Z.-Y.Cao, T.Ghosh, P.Melchiorre. Nat. Commun., 9, 3274 (2018); https://doi.org/10.1038/s41467-018-05375-2
507.
A.Wiebe, T.Gieshoff, S.Möhle, E.Rodrigo, M.Zirbes, S.R.Waldvogel. Angew. Chem., Int. Ed., 57, 5594 (2018); https://doi.org/10.1002/anie.201711060
508.
S.D.Minteer, P.Baran. Acc. Chem Res., 53, 545 (2020);
https://doi.org/10.1021/acs.accounts.0c00049
509.
S.Cembellín, B.Batanero. Chem. Rec., 21, 2453 (2021);
https://doi.org/10.1002/tcr.202100128
510.
B.A.Frontana-Uribe, R.D.Little, J.G.Ibanez, A.Palma, R.Vasquez-Medrano. Green Chem., 12, 2099 (2010);
ht
Выпуск
В выпуске предоставляется обзор точки зрения ведущих российских специалистов, работающих в различных областях данного направления, включая гомогенный и гетерогенный катализ, тонкий и промышленный органический синтез, электрохимию, полимерную химию, химию на основе биовозобновляемого сырья, химию энергоемких соединений и материалов.
Издательство
- Издательство
- "РНЦ "ПРИКЛАДНАЯ ХИМИЯ (ГИПХ)"
- Регион
- Россия, Санкт-Петербург
- Почтовый адрес
- 193232, г. Санкт-Петербург, ул. Крыленко, 26А
- Юр. адрес
- 193232, г Санкт-Петербург, Невский р-н, ул Крыленко, д 26 литера а
- ФИО
- Козлова Елена Викторовна (ГЕНЕРАЛЬНЫЙ ДИРЕКТОР)
- Сайт
- https://giph.su/