Рассматривается сезонная изменчивость пространственного распределения и величины горизонтальных градиентов температуры, солености и плотности в крупномасштабных поверхностных фронтальных зонах в северной части Атлантического океана. Используются среднемесячные данные о температуре и солености на горизонте 0.5 м океанического реанализа ORAS5 (1958–2021 гг.). Получено, что высокие градиенты температуры, превышающие 2 °С/100 км, солености – 1 ЕПС/100 км, плотности – 1 кг·м–3/100 км, наблюдаются в субполярной и умеренной зонах во фронтах вдоль крупномасштабных течений, переносящих теплые соленые воды из южных широт (Гольфстрим, Северо-Атлантическое течение) и холодные воды с низкой солено-стью из арктических районов (Лабрадорское течение, Восточно-Гренландское тече-ние). Эти фронты выделяются в течение всего года. Высокие градиенты солености и плотности также отмечаются летом в тропической зоне во фронте на границе плюма Амазонки, возникающего в результате сезонного стока реки. В указанных пяти фронтальных зонах были выделены области, для которых приводятся количе-ственные оценки сезонной изменчивости градиентов. В субполярной и умеренной зонах максимальные градиенты температуры отмечаются в зимнее время. Прогрев воды в летний сезон сопровождается уменьшением градиентов. Наибольший размах сезонной изменчивости градиентов температуры наблюдается во фронтальных зонах Гольфстрима и Восточно-Гренландского течения. Летом во фронтах субполярных районов происходит повышение градиентов солености вследствие таяния арктиче-ских и материковых льдов и увеличения поступления вод с пониженной соленостью. Во фронтальной зоне Восточно-Гренландского течения, а также на границе плюма реки Амазонки отмечается наиболее высокий размах сезонных изменений градиентов солености и плотности. В этих районах возрастает вклад солености в сезонные изменения плотности на поверхности океана.
Идентификаторы и классификаторы
Фронтальные зоны – области в океане, где вследствие переноса вод течениями, стока рек, апвеллингов и других динамических процессов встречаются водные массы с различными физико-химическими и биологическими свой-ствами [1, 2].
Список литературы
1.Федоров К. Н. Физическая природа и структура океанических фронтов. Ленин-град : Гидрометеоиздат, 1983. 296 с.
2.Belkin I. M., Cornillon P. C., Sherman K. Fronts in large marine ecosystems // Progress in Ocea- nography. 2009. Vol. 81, iss. 1–4. P. 223–236. https://doi.org/10.1016/j.pocean.2009.04.015
3.Taylor J. R., Ferrari R. Ocean fronts trigger high latitude phytoplankton blooms // Geophysi-cal Research Letters. 2011. Vol. 38, iss. 23. L23601. https://doi.org/10.1029/2011GL049312
4.Olson D. B. Biophysical dynamics of ocean fronts // The Sea: Ideas and Observationson Progress in the Study of the Seas. Harvard University Press, 2002. Vol. 12 : Biolog-ical-Physical Interactions in the Sea. P. 187–218.
5.Global trends of fronts and chlorophyll in a warming ocean / K. Yang [et al.] // Com-munications Earth & Environment. 2023. Vol. 4. 489. https://doi.org/10.1038/s43247-023-01160-2
6.Oceanic fronts and jets around Japan: a review / S. Kida [et al.] // “Hot Spots” in the ClimateSystem. Tokyo : Springer, 2016. P. 1–30. https://doi.org/10.1007/978-4-431-56053-1_1
7.Cromwell T., Reid Jr. J. L. A study of oceanic fronts // Tellus. 1956. Vol. 8, iss. 1.Р. 94–101. https://doi.org/10.3402/tellusa.v8i1.8947
8.Ferrari R. A frontal challenge for climate models // Science. 2011. Vol. 332, no. 6027.P. 316–317. https://doi.org/10.1126/science.1203632
9.Submesoscale fronts in the Antarctic marginal ice zone and their response to windforcing / S. Swart [et al.] // Geophysical Research Letters. 2020. Vol. 47, iss. 6.e2019GL086649. https://doi.org/10.1029/2019GL086649
10.Fronts in the Southern Indian Ocean as inferred from satellite sea surface temperaturedata / A. G. Kostianoy [et al.] // Journal of Marine Systems. 2004. Vol. 45, iss. 1–2.P. 55–73. https://doi.org/10.1016/j.jmarsys.2003.09.004
11.Коник А. А., Зимин А. В. Пространственно-временная изменчивость характеристикАрктической фронтальной зоны в Баренцевом и Карском морях в летний периодв первые два десятилетия XXI века // Морской гидрофизический журнал. 2022. Т. 38,№ 6. С. 679–693. EDN BSJBNO. https://doi.org/10.22449/0233-7584-2022-6-679-693
12.Артамонов Ю. В., Скрипалева Е. А., Никольский Н. В. Климатическая структурадинамических и температурных фронтов в море Скоша и прилегающих акваториях// Морской гидрофизический журнал. 2022. Т. 38, № 2. С. 127–150. EDN OKWWJW.https://doi.org/10.22449/0233-7584-2022-2-127-150
13.Belkin I. M. Remote sensing of ocean fronts in marine ecology and fisheries // RemoteSensing. 2021. Vol. 13, iss. 5. 883. https://doi.org/10.3390/rs13050883
14.Yu L. Sea surface salinity fronts and associated salinity minimum zones in the tropicalocean // Journal of Geophysical Research: Oceans. 2015. Vol. 120, iss. 6. P. 4205–4225.https://doi.org/10.1002/2015JC010790
15.Oceanic fronts in the southern Indian Ocean as inferred from the NOAA SST, TOPEX/Poseidon and ERS-2 altimetry data / A. G. Kostianoy [et al.] // Gayana (Concepción).2004. Vol. 68, no. 2. P. 333–339. https://dx.doi.org/10.4067/S0717-65382004000300003
16.Ахтямова А. Ф., Травкин В. С. Исследование фронтальных зон Норвежскогоморя // Морской гидрофизический журнал. 2023. Т. 39, № 1. С. 67–83. EDNIHBIQE. https://doi.org/10.29039/0233-7584-2023-1-67-83
17.Сезонная изменчивость горизонтальных градиентов температуры воды в Север-ной Атлантике / Л. И. Галеркин [и др.] // Доклады Академии наук. 2002. Т. 384,№ 4. С. 539–543. EDN BNSEJD.
18.Miller P. I., Read J. F., Dale A. C. Thermal front variability along the North AtlanticCurrent observed using microwave and infrared satellite data // Deep Sea ResearchPart II: Topical Studies in Oceanography. 2013. Vol. 98, part B. P. 244–256.https://doi.org/10.1016/j.dsr2.2013.08.014
19.Kazmin A. S. Variability of the climatic oceanic frontal zones and its connectionwith the large-scale atmospheric forcing // Progress in Oceanography. 2017. Vol. 154.P. 38–48. https://doi.org/10.1016/j.pocean.2017.04.012
20.Артамонов Ю. В., Скрипалева Е. А. Структура и сезонная изменчивость крупно-масштабных фронтов Атлантического океана по спутниковым данным // Иссле-дование Земли из космоса. 2005. № 4. С. 62–75. EDN HRZZTV.
21.Santos A. M. P., Kazmin A. S., Peliz A. Decadal changes in the Canary upwelling sys-tem as revealed by satellite observations: Their impact on productivity // Journal ofMarine Research. 2005. Vol. 63, iss. 2. P. 359–379.
22.Новикова Ю. С., Башмачников И. Л. Сезонная и межгодовая динамика фронталь-ных зон в Северной Атлантике // Труды II Всероссийской конференции «Гидроме-теорология и экология: достижения и перспективы развития». Санкт-Петербург :Химиздат, 2018. С. 496–498.
23.The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice:a description of the system and assessment / H. Zuo [et al.] // Ocean Science. 2019.Vol. 15, iss. 3. P. 779–808. https://doi.org/10.5194/os-15-779-2019
24.Eddy‐resolving in situ ocean climatologies of temperature and salinity in the NorthwestAtlantic Ocean / D. Seidov [et al.] // Journal of Geophysical Research: Oceans. 2019.Vol. 124, iss. 1. P. 41–58. https://doi.org/10.1029/2018JC014548
25.The northern North Atlantic Ocean mean circulation in the early 21st century /N. Daniault [et al.] // Progress in Oceanography. 2016. Vol. 146. P. 142–158.https://doi.org/10.1016/j.pocean.2016.06.007
26.Spatio-temporal analysis of east Greenland polar front / Y. Liu [et al.] // Frontiersin Marine Science. 2022. Vol. 9. 943457. https://doi.org/10.3389/fmars.2022.943457
27.Kostianoy A. G., Nihoul J. C. J., Rodionov V. B. Physical oceanography of frontal zonesin the subarctic seas. Amsterdam: Elsevier, 2004. 316 p. (Elsevier Oceanography Se-ries ; Vol. 71).
28.Ullman D. S., Cornillon P. C., Shan Z. On the characteristics of subtropical fronts inthe North Atlantic // Journal of Geophysical Research: Oceans. 2007. Vol. 112, iss. C1.C01010. https://doi.org/10.1029/2006JC003601
29.Taylor A. H., Stephens J. A. The North Atlantic Oscillation and the latitude of the GulfStream // Tellus A: Dynamic Meteorology and Oceanography. 1998. Vol. 50, iss. 1.P. 134–142. https://doi.org/10.3402/tellusa.v50i1.14517
30.Surface and bottom temperature and salinity climatology along the continental shelf offthe Canadian and U.S. East Coasts / B. Richaud [et al.] // Continental Shelf Research.2016. Vol. 124. P. 165–181. https://doi.org/10.1016/j.csr.2016.06.005
31.Seasonal variability of the Labrador Current and shelf circulation off Newfoundland /G. Han [et al.] // Journal of Geophysical Research: Oceans. 2008. Vol. 113, iss. C10.https://doi.org/10.1029/2007JC004376
32.Interannual surface salinity on Northwest Atlantic shelf / S. A. Grodsky [et al.] //Journal of Geophysical Research: Oceans. 2017. Vol. 122, iss. 5. P. 3638–3659.https://doi.org/10.1002/2016JC012580
33.Ohashi K., Sheng J. Influence of St. Lawrence River discharge on the circulation andhydrography in Canadian Atlantic waters // Continental Shelf Research. 2013. Vol. 58.P. 32–49. https://doi.org/10.1016/j.csr.2013.03.005
34.Seasonal variability of the East Greenland Coastal Current / S. Bacon [et al.] // Journalof Geophysical Research: Oceans. 2014. Vol. 119, iss. 6. P. 3967–3987.https://doi.org/10.1002/2013JC009279
35.Amplified seasonal cycle in hydroclimate over the Amazon river basin and its plumeregion / Y. C. Liang [et al.] // Nature Communications. 2020. Vol. 11. 4390.https://doi.org/10.1038/s41467-020-18187-0
36.Yu L., Jin X., Weller R. A. Role of net surface heat flux in seasonal variations of seasurface temperature in the tropical Atlantic Ocean // Journal of Climate. 2006. Vol. 19,iss. 23. P. 6153–6169. https://doi.org/10.1175/JCLI3970.1
Выпуск
Другие статьи выпуска
Плоский гребешок Flexopecten glaber ponticus (Bucquoy, Dautzenberg & Dollfus, 1889), являющийся эндемиком Черного моря, может быть отнесен к потенциальным объектам культивирования у берегов Крыма. Данные последних лет свидетельствуют о вос-становительных процессах в популяции гребешка на Крымском побережье. В массовом количестве гребешок оседает в выростные садки с гигантской устрицей Crassostrea gigas (Thunberg, 1793), что позволяет выращивать его в подвесной куль-туре благодаря доступности и простоте сбора. Цель работы – изучить сезонную дина-мику линейного и весового роста черноморского гребешка F. glaber ponticus при сад-ковом выращивании у берегов Крыма. Впервые представлена модель роста, адекватно описывающая линейный рост моллюсков. Определена линейная зависимость высоты раковины гребешка от возраста и экспоненциальная зависимость общего живого веса гребешков от высоты раковины. Показано, что индексы товарного качества F. glaber ponticus: выход мяса, индекс кондиции и гонадосоматический индекс – изменяются в зависимости от сезона. Максимальные значения индекса кондиции и выхода мяса отмечены в апреле и составляли соответственно 63.40 и 33.01 %. Гонадосоматический индекс увеличивался с января по июнь (от 6.8 до 13.14 %) и уменьшался с июля по ноябрь, что связано с процессами гаметогенеза и нереста моллюсков. Доля сухого ве-щества в мягких тканях составила 16.5 %. Рекомендована продолжительность выра-щивания (2.5–3 года) и сроки сбора товарной продукции черноморского гребешка как перспективного объекта марикультуры. Для сбора урожая черноморского гребешка товарного размера может быть оптимальным зимне-весенний период.
Для введения в эксплуатацию ультразвуковой установки, эффективной для борьбы с микрофитообрастаниями гидротехнических сооружений атомных электростанций, необходимо проведение натурных исследований, подтверждающих ее безопасность для гидробионтов, в частности рыб, попадающих в зону действия ультразвука. Цель работы состоит в оценке воздействия ультразвуковой установки (мощностью 500 Вт, частотой 27 кГц, силой тока 3 А) на поведенческие реакции, биохимические и гисто-патологические показатели некоторых видов рыб Черного моря в условиях морской акватории (б. Карантинная, Черное море). Эксперимент проводили в течение трех дней, в каждый из которых ультразвуковую установку включали на 1 ч при частоте воздействия 27кГц. После этого особи содержались в садках еще на протяжении пяти дней для оценки возможных отсроченных эффектов. Установлено, что на небольшом расстоянии (10–30 см) ультразвуковая установка оказывает на рыб раздражающее и отпугивающее воздействие. Наиболее выраженные поведенческие реакции были от-мечены у султанки Mullus ponticus, ставриды Trachurus ponticus, смариды Spicara flexuosum и морского кота Dasyatis pastinaca, наименее выраженные – у морского ерша Scorpaena porсus. При этом на протяжении всего эксперимента гибели рыб не наблюдали ни в опытном, ни в контрольном садках. Достоверные различия между биохимическими показателями в сыворотке крови и печени анализируемых видов рыб из опытного и контрольного садков отсутствуют. Сравнительный анализ индексов гистопатологических изменений печени, жабр и почек, а также общих индексов альтераций у рыб из опытного и контрольного садков не показал достоверных различий. Полученные результаты свидетельствуют, что ультразвуковая установка с за-данными характеристиками воздействия не влияет на состояние рыб из опытной группы, что позволяет рекомендовать данную установку к использованию в системах технического водоснабжения атомных электростанций.
Кадмий – высокотоксичный металл, активно мигрирующий в системе вода – взве-шенные наносы – донные отложения. Цель работы – изучить его содержание в воде и донных отложениях Азовского моря в 1991–2020 гг. и оценить процесс седимента-ционного самоочищения вод. Данные о распределении кадмия показали, что в воде Таганрогского залива и открытой части моря наблюдалось медленное снижение его концентрации с 1991 по 2009 г. и увеличение в 2010–2016 гг. Концентрация кадмия в воде Азовского моря не превышала предельно допустимую концентрацию (10 мкг/л) для морских вод объектов рыбохозяйственного назначения. Уровень загрязнения донных осадков кадмием в работе оценивался путем сравнения с крите-риями экологической оценки загрязненности грунтов по «голландским листам». Содержание кадмия в донных осадках до 2010 г. снижалось, после чего было отмечено его увеличение и в открытой части моря, и в Таганрогском заливе. Содержание кадмия превышало значение кларка этого металла на протяжении всего периода иссле-дования. Элиминация кадмия из вод открытой части моря составляла 0.9–6.0 т/год, из вод Таганрогского залива – 0.5–2.4 т/год. Данные оценки потоков кадмия в донные отложения могут характеризовать седиментационное самоочищение вод. Период седиментационного оборота кадмия в открытой части моря и Таганрогском заливе при различных его концентрациях в воде за исследуемый период в среднем составлял 70 и 13.7 лет соответственно с учетом различий в объеме исследуемых акваторий. Зависимость коэффициента накопления кадмия донными отложениями от его кон-центрации в воде показала, что повышенная интенсивность седиментационного самоочищения вод при низких концентрациях кадмия в воде обеспечивалась высокой концентрирующей способностью донных отложений, связанной с их гранулометрическим составом. В Азовском море глинисто-илистые осадки (фракция 0.01 мм) составляют более 70 %. С увеличением степени загрязнения вод кадмием коэффициент накопления уменьшался и, соответственно, снижался вклад седиментационных про-цессов в самоочищение вод. Ассимиляционная способность донных отложений в от-ношении Cd составила в открытой части Азовского моря 3.8 т/год, а в Таганрогском заливе – 0.7 т/год.
Арсенопирит – распространенный минерал класса сульфидов, относящийся к минералам гидротермального происхождения. На техногенных отвалах арсенопирит подвергается воздействию агентов выветривания и выделяет мышьяк в окружающую среду. В районах, где разрабатываются минералы Cu, Pb, Zn, загрязнение окружающей среды мышьяком является серьезной проблемой. Результаты настоящего исследования пока-зывают, что при выветривании на отвалах в условиях просачивания и затопления арсенопиритные руды способны выделять мышьяк и тяжелые металлы. Представлены результаты лабораторного эксперимента на разработанной имитационной модели изменения вещества в рудных отвалах шахт при двух условиях: при просачивании (моделирование открытых отвалов руды, через которые просачивается дождевая вода) и затоплении (моделирование отвалов руды, хранящихся в затопленных низинных районах). Модельные условия соответствуют реальным. Соотношение арсенопирита и песка 1:20. Продолжительность эксперимента составляет 60 сут, что позволяет определить мышьяк в различных химических веществах. В ходе эксперимента в условиях инфильтрации воды рН снижается, а окислительно-восстановительный потенциал варьирует от 5 до 50 мВ, при снижении рН выделение металлов и мышь-яка в окружающую среду с течением времени увеличивается. По достижении рН значений, характеризующих кислую среду (2.0–4.5), выветривание заметно ускоряется. В условиях избытка воды при высоком содержании растворенного кислорода металлы высвобождаются быстрее. Когда pH находится в диапазоне от 5.5 до 6.0, скорость высвобождения металлов снижается. При окислении руды железо в двухвалентной форме Fe(II) медленно окисляется до Fe(III) при pH, указанном выше. В этих условиях Fe(III) гидролизуется в колонке. Таким образом, выделяющийся мышьяк адсорбируется на Fe(III), а образующийся гидроксид железа Fe(OH)3 покрывает частицы руды. Благодаря уменьшению контакта отработанной руды с водной средой концентрация мышьяка продолжает снижаться. Как в случае просачивания, так и в случае затопления As(III) преобладает над As(V) в потоке, выходящем из рудной колонки. As(III) может быть высокотоксичным для окружающей среды, поэтому следует обратить внимание на обеспечение условий его перехода в менее токсичный As(V).
Изучена динамика содержания биогенных элементов (минерального (фосфатного) и общего фосфора и аммония) по результатам ежегодных мониторинговых иссле-дований воды восточной части Финского залива, проводившихся в 2020–2022 гг. Анализировалась информация о распределении показателей по горизонтали и по вер-тикали, поэтому пробы отбирали в поверхностном, придонном, а на глубоководных станциях и в серединном слоях воды. Содержание элементов определяли спектрофо-тометрическим методом. Сопоставляются и анализируются результаты по среднеме-дианным значениям. В период исследований концентрация фосфатного фосфора в аб-солютном большинстве случаев не превышала ПДК (0.15 мг/дм3), концентрации об-щего фосфора в среднем соответствовали мезотрофному статусу, хотя наблюдались случаи повышения его концентрации до значений, характерных для эвтрофного ста-туса водоема: в 2020 г. в придонном и поверхностном слоях воды (в июне в основном на прибрежных станциях (0.091 мг P/дм3) и в сентябре преимущественно в придон-ном слое на центральных станциях, удаленных от берега), в 2021 г. летом концентра-ции достигали 0.147 мг P/дм3 (поверхностный слой) и 0.171 мг P/дм3 (придонный слой) на прибрежных станциях, 0.163 мг P/дм3 на центральной станции. Концентрации аммонийного азота в основном находились в пределах ПДК (0.5 мг/дм3). В июне 2021 г. выделялись локальные области вдоль южного и северного берега Финского залива с относительно высоким содержанием аммонийного азота (до 0.285 мг/дм3) в поверхностном и придонном слоях воды. В целом, несмотря на высокую антропогенную нагрузку, концентрации минерального фосфора и аммония в водах Фин-ского залива находились в пределах ПДК, превышения фиксировались редко, обычно в Невской губе, Копорской губе, у побережья Курортного района. Повышенные концентрации общего фосфора на центральных станциях, по-видимому,можно объяснить переносом вещества из западной части залива и диффузией из дон-ных отложений. В среднем в придонных слоях воды обнаруживается более высокое содержание общего фосфора, чем в поверхностных. В целом концентрации биогенных элементов соответствуют мезотрофному статусу водоема.
Макрофиты выступают в качестве важных биоиндикаторов условий окружающей среды и долгосрочных изменений качества воды, что позволяет использовать макро-фитов при изучении динамики донных природных комплексов. Цель работы – выяв-ление основных гидрофизических и гидрохимических факторов, приводящих к изменениям биомассы донных фитоценозов в районе м. Коса Северная. Проанализированы и обобщены литературные источники, результаты ландшафтных и гидроботанических исследований (летний период 1964, 1997, 2006 и 2017 гг.) в прибрежной зоне м. Коса Северная – м. Толстый c использованием данных о температуре воды, содержании в воде нитратов, нитритов, аммония, фосфатов и общего взвешенного вещества в 1998–2021 гг., а также результаты имитационного моделирования дина-мики биомассы макрофитобентоса в этом районе в 1998–2002 гг. В ландшафтной структуре прибрежной зоны района исследования в разные периоды времени выделялись несколько донных природных комплексов, причем с течением времени их состав и количество менялись. В эрикариево-гонголариевом фитоценозе (0.5–5 м) к 2006 г. произошло увеличение биомассы доминирующих видов, характеризующее-ся ростом доли эпифитов. В 2017 г. наблюдалось восстановление доминирующих видов, а общая биомасса возросла почти в три раза. Эрикариево-гонголариево-филлофоровый фитоценоз (5–10 м) полностью исчез к 2006 г., а на его месте в 2017 г. была зафиксирована Dictyota spp. Филлофоровый фитоценоз (глубины свыше 10 м) существенно деградировал в 1997 г., его биомасса сократилась почти до нуля. В 2006 г. Phyllophora crispa на этих глубинах не регистрировалась, но к 2017 г. по-явились отдельные участки дна, где представлена Phyllophora crispa с биомассой, меньшей на порядок по сравнению с 1964 г. Сделан вывод, что зафиксированные трансформации донных сообществ были вызваны в основном изменениями прозрачности воды, связанными с содержанием общего взвешенного вещества. Для слежения за развитием ситуации целесообразно регулярно с частотой раз в несколько лет про-водить гидроботанические съемки.
Исследуются характеристики штормового волнения в бухте Ласпи (Крымский полу-остров) с использованием численной гидродинамической модели SWASH с пространственным разрешением 5 м. В качестве граничных условий задаются данные реанализа волнения, полученные на основе спектральной модели SWAN. Анализируются поля значимых высот волн hs и скоростей волновых течений в бухте при штормах различной режимной обеспеченности. Установлено, что при штормах, возможных 1 раз в год, 1 раз в 5, 10 и 25 лет максимальные значения hs в бухте могут достигать 2.5–3.0, 4.0–4.5, 5.0–5.5 и 6.0–6.5 м соответственно. При этом при штормах, возможных 1 раз в 25 лет, усиление волновых скоростей до 1.5–3.0 м/c происходит вблизи берега на глу-бинах менее 10 м. Влияние на волны защитного мола, построенного в 1980-х гг., является локальным и проявляется в формировании теневой зоны с его подветренной сто-роны. Обсуждаются вопросы возможного влияния штормового волнения на сокращение донной растительности в бухте Ласпи. Анализ волновой нагрузки на дно бухты показал, что в период экстремальных штормов в ее акватории наиболее подвержен-ными воздействию волн оказываются склоны в области глубин от 2 до 12 м, где значения плотности кинетической энергии увеличиваются до 500–2000 Дж/м3. При этом в западной оконечности бухты плотность может достигать 3000–4500 Дж/м3. В сред-ней части бухты значения энергетической нагрузки невелики. Поэтому к исчезновению здесь донной растительности могло привести не штормовое воздействие, а увели-чение мутности воды, вызванное антропогенными факторами. Полученные результаты имеют большое практическое значение для безопасности мореплавания, проектирования и эксплуатации объектов береговой инфраструктуры.
Прибрежная зона Крыма и его шельф являются объектами многолетних комплексных исследований, предопределенных той значимой ролью, которую эти зоны играют в экономической жизни полуострова. Цель работы состоит в выявлении трендов меж-годовой изменчивости структурных и функциональных характеристик пелагического сообщества. Данные дистанционных измерений (со спутников), контактных измерений (с борта научно-исследовательского судна) и расчетные параметры использованы для выявления изменчивости физических и биологических характеристик шельфовых вод Крыма в 2010–2020 гг. Показано, что после экологических катаклизмов 1990-х гг., связанных с эвтрофикацией шельфа и трофическим прессом планктонных видов-вселенцев, планктонное сообщество вступило в период относительной стабильности. Межгодовая изменчивость его ключевых структурных и функциональных характеристик (биомассы фитопланктона, интенсивности его биолюминесценции, биомассы зоопланктона, чистой первичной продукции и отношения продукции к биомассе) характеризуется не столько статистически значимыми трендами многолетней измен-чивости, сколько межгодовыми колебаниями, обусловленными гидрофизической дина-микой. Эта динамика оценивалась двумя параметрами: величиной плотности кинетической энергии и кросс-шельфовым массопереносом в верхних слоях.
В связи с проблемой нерационального природопользования рассмотрена динамика бе-регов одного из популярных курортов Крыма. Цель работы – дать ретроспективную оценку изменений береговой зоны бухты Коктебель, подвергающейся антропогенному воздействию. Использованы материалы обследований, литературные и архивные источники, данные оцифровки береговых линий на космических снимках за 2011–2021 гг. Даны физико-географическая и литодинамическая характеристики бухты. Рассмотрено антропогенное воздействие на береговую зону и отклик береговой линии на него. Показано, что за последние 100 лет антропогенное воздействие на бухту Коктебель привело к сокращению ширины или исчезновению пляжей, изменению их веще-ственного состава, замене естественного ландшафта антропогенным, что снизило его эстетическую привлекательность. Выделено три периода в эволюции береговой зоны. Для первого характерно постепенное нарастание антропогенного воздействия на ланд-шафты суши и береговой зоны. Во второй период сложившееся динамическое равно-весие нарушилось и баланс наносов стал отрицательным. Это было обусловлено заре-гулированием стока водотоков и промышленной разработкой песка, гравия и гальки в береговой зоне. Такое воздействие привело к резкому уменьшению площади пляжей, вплоть до полного их исчезновения на отдельных участках. Третий период характеризуется резким увеличением антропогенного воздействия, которое выразилось в актив-ном (часто незаконном) строительстве на пляжах различных сооружений, а также воз-ведением гидротехнических сооружений с целью защиты и восстановления пляжей. Показано, что к настоящему времени техногенные берега занимают около 3 км, здесь природные процессы трансформировались в природно-антропогенные. Природные ландшафты берегов сохранились только в восточной (протяженностью около 2 км) и западной (около 1.5 км) частях бухты при общей ее длине 7 км. Приводятся сведения о проектах защиты берега, выполненных ранее и реализуемых в настоящее время.
Издательство
- Издательство
- МГИ
- Регион
- Россия, Севастополь
- Почтовый адрес
- Капитанская ул., 4
- Юр. адрес
- Капитанская ул., 4
- ФИО
- Коновалов Сергей Карпович (Директор)
- E-mail адрес
- sysmhi@mail.ru
- Контактный телефон
- +7 (869) 2547013
- Сайт
- http://mhi-ras.ru/