Книга: Курс дифференциального и интегрального исчисления, том 1.

Из школьного курса читателю хорошо знакомы рациональные числа и их свойства. В то же время, уже потребности элементарной математики приводят к необходимости расширения этой числовой области. Действительно, среди рациональных чисел не существует зачастую корней даже из целых положительных (натуральных) чисел, например, √2, т.е. нет такой рациональной дроби p/q (где p и q — натуральные числа), квадрат которой был бы равен 2.

Для доказательства этого допустим противное: пусть существует такая дробь p/q, что (p/q)² = 2. Мы вправе считать эту дробь несократимой, т.е. p и q лишёнными общих множителей. Так как p² = 2q², то p есть число чётное: p = 2r (где r — целое), и, следовательно, q — нечётное. Подставляя вместо p его выражение, мы имеем: q² = 2r², откуда следует, что q — чётное число. Полученное противоречие доказывает наше утверждение.

Информация о документе

Формат документа
PDF, DJVU
Кол-во страниц
616 страниц
Загрузил(а)
Лицензия
Доступ
Всем
Просмотров
24

Предпросмотр документа

Информация о книге

Издательство
Наука
Год публикации
1962
Автор(ы)
Фихтенгольц Г.М.
Каталог SCI
Математика