Книга: Хроматические числа
В сороковые годы XX века известными математиками П. Эрдёшом и Г. Хадвигером была поставлена одна из самых коротко формулируемых и в то же время одна из самых ярких и трудных задач комбинаторной геометрии — задача о нахождении хроматического числа χ( n) евклидова пространства R n, т. е. минимального числа цветов, в которые можно так раскрасить точки пространства, чтобы точки, отстоящие друг от друга на расстояние 1, оказались раскрашенными в разные цвета.
Эта задача до сих пор не решена даже для n=2, т. е. для плоскости, хотя простотой и естественностью своей постановки она сразу привлекла внимание всех математиков. К настоящему времени разработано много интересных и остроумных подходов к её (пока частичному) решению.
Текст брошюры представляет собой запись лекции, прочитанной автором 7 декабря 2002 года на Малом мехмате МГУ для школьников 9—11 классов. Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.
Информация о документе
- Формат документа
- Кол-во страниц
- 52 страницы
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 11
Предпросмотр документа
Информация о книге
- Издательство
- МЦНМО
- Год публикации
- 2003
- Каталог SCI
- Математика
- ББК
- 22.1. Математика
- УДК
- 51. Математика