Книга: Примеры метрических пространств
В математике часто рассматриваются множества, между элементами («точками») которых определено расстояние (метрика). Такие множества называют метрическими пространствами, если выполнены соответствующие аксиомы. Существует много разных способов определить расстояние в разных множествах.
В брошюре обсуждается, как можно измерять расстояние не только между точками на плоскости, но и между кривыми, множествами, функциями. Важным примером расстояния между кривыми является хаусдорфова метрика. Многие метрические пространства существенно отличаются от привычной евклидовой плоскости. Примером метрики с необычными свойствами может служить p p-адическая метрика, относящаяся к классу так называемых неархимедовых метрик.
Текст брошюры представляет собой дополненную обработку записи лекции, прочитанной автором 17 февраля 2001 года на Малом мехмате МГУ для школьников 9 − 11 9−11 классов.
Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей…
Информация о документе
- Формат документа
- Кол-во страниц
- 24 страницы
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 10
Предпросмотр документа
Информация о книге
- Год публикации
- 2002
- Каталог SCI
- Математика
- ББК
- 22.1. Математика
- УДК
- 51. Математика