Статья: UNIQUE SOLVABILITY OF IBVP FOR PSEUDO-SUBDIFFUSION EQUATION WITH HILFER FRACTIONAL DERIVATIVEON A METRIC GRAPH
In this paper, we investigate an initial boundary-value problem for a pseudo-subdiffusion equation involving the Hilfer time-fractional derivative on a metric graph. At the boundary vertices of the graph, we used the Dirichlet condition. At the branching points (inner vertices) of the graph, we use δ-type conditions. Such kind of conditions ensure a local flux conservation at the branching points and are also called Kirchhoff conditions. The uniqueness of a solution of the considered problem is shown using the so-called method of energy integrals. The existence of a regular solution to the considered problem is proved. The solution is constructed in the form of the Fourier series.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 9
Предпросмотр документа
Информация о статье
- ISSN
- 2500-0101
- EISSN
- 2619-0117
- Журнал
- ЧЕЛЯБИНСКИЙ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ЖУРНАЛ
- Год публикации
- 2023