Статья: ОДНОСТОРОННЯЯ ЗАДАЧА ДЛЯ ОПЕРАТОРА БАРЕНБЛАТТА - ЖЕЛТОВА - КОЧИНОЙ

Доклад посвящён исследованию односторонней задачи для псевдопараболического оператора Баренблатта - Желтова - Кочиной в одномерном случае. Эта задача формулируется в виде вариационного неравенства и с физической точки зрения моделирует нестационарный процесс фильтрации вязкой жидкости в трещиновато-пористой галерее с ограничением на модуль скорости фильтрации по трещинам. Теорема существования слабого обобщённого решения этой задачи известна в литературе как в одномерном, так и многомерном случаях, и следует из результатов, полученных М. Пташник (Nonlinear Analysis, 2007, vol. 66, pp. 2653-2675) с применением метода штрафа. При этом оператор штрафа выбирался в стандартном виде. В настоящем исследовании рассматривается приближённая начально-краевая задача с оператором штрафа А. Каплана и изучается семейство её решений. Благодаря специфической структуре оператора А. Каплана, удаётся получить повышенную регулярность слабого обобщённого решения исходной задачи по отношению к ранее известным свойствам регулярности, а также найти усиленное свойство аппроксимации этого решения последовательностью решений приближённой задачи с оператором А. Каплана. Основные результаты исследования подробно изложены в статье [Т. В. Саженкова, С. А. Саженков, Е. В. Саженкова. Регулярность и аппроксимация решения односторонней задачи для псевдопараболического оператора Баренблатта - Желтова - Кочиной // Матем. заметки СВФУ, 2022, 29 (1), 69 - 87].

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Лицензия
Доступ
Всем
Просмотров
1

Предпросмотр документа

Информация о статье

ISSN
2500-3453
EISSN
2687-0118
Журнал
МАК: МАТЕМАТИКИ - АЛТАЙСКОМУ КРАЮ
Год публикации
2022
Автор(ы)
САЖЕНКОВ С. А., Саженкова Е. В., САЖЕНКОВА Т. В.