Статья: РЕГУЛЯРИЗАЦИЯ ПРОЦЕССА ОБУЧЕНИЯ ГРАФОВЫХ НЕЙРОННЫХ СЕТЕЙ МЕТОДОМ РАСПРОСТРАНЕНИЕ МЕТОК
Графовые нейронные сети в настоящее время являются объектом все возрастающего интереса в области машинного обучения и анализа данных. Их специализированная архитектура позволяет эффективно моделировать и анализировать сложные структуры данных на графах, такие как социальные сети, биоинформационные сети, транспортные сети и другие. С возрастанием объема данных, представленных в виде графов, растет их значимость как инструмента для понимания и прогнозирования сложных взаимосвязей и паттернов. Данная работа направлена на оценку эффективности метода L2-регуляризации, применяемого при машинном обучении в контексте задачи кластеризации узлов графа. Под кластеризацией понимается объединение узлов в группы, выделяемые по степени их связности. При обучении используется специальный метод регуляризации и реализующий его алгоритм распространения меток LPA (Label Propagation Algorithm), а также расширение данного подхода на две популярные архитектуры графовых нейронных сетей: GraphSAGE (Graph Sample and Aggregation) и GAT (Graph Attention Networks). В рамках исследования проводится сравнительный анализ эффективности применения метода LPA на различных датасетах, широко применяемых в научных и практических задачах. Результаты исследования показывают заметное улучшение точности анализа графовых моделей данных при использовании анализируемого подхода. Проведенное исследование способствует более глубокому пониманию воздействия общего подхода L2-регуляризации в плане обучения графовых нейронных сетей.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
Информация о статье
- ISSN
- 1995-5499
- Журнал
- ВЕСТНИК ВОРОНЕЖСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: СИСТЕМНЫЙ АНАЛИЗ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
- Год публикации
- 2024
- Каталог SCI
- Информатика