Статьи в выпуске: 5

РАБОТА С ДАННЫМИ В УЧЕБНОМ ЯЗЫКЕ ПРОГРАММИРОВАНИЯ СИНХРО (2023)
Авторы: Городняя Лидия Васильевна

Статья является продолжением собственных предыдущих исследований автора в рамках многолетней работы по созданию учебного языка программирования СИНХРО, предназначенного для ознакомления с параллелизмом. Основное направление работ - уточнение понятий, способствующих подготовке небольших многопоточных программ при обучении параллельному программированию. Главный результат последнего года заключается в развитии механизма взаимодействия локальной и общей памяти. Дан приоритет парадигме функционального программирования, популярной при подготовке прототипов многопоточных программ. Это помогло преодолеть зависимость порядка вычислений от последовательности вхождения выражений в текст программы и размещения данных в памяти. Описаны отличия от привычных понятий программирования, сдерживающих решение задач организации параллельных вычислений и предельно распределенных систем из ряда потоков, взаимодействующих в терминах доступа к значениям переменных, возможно расположенных в общей памяти. Повышен базовый уровень воздействий на память. Часть из них укрупнены для предотвращения неожиданностей из-за асинхронности и ослабления императивности элементов распределенных систем. Добавлено понятие команд-двойников для управления императивной синхронизацией взаимодействующих устройств, полезное при решении вопросов освобождения памяти.

Сохранить в закладках
РЕШЕНИЕ СЕТОЧНЫХ УРАВНЕНИЙ ПОПЕРЕМЕННО-ТРЕУГОЛЬНЫМ МЕТОДОМ НА ГРАФИЧЕСКОМ УСКОРИТЕЛЕ (2023)
Авторы: Сухинов Александр Иванович, Литвинов Владимир Николаевич, Чистяков Александр Евгеньевич, Никитина Алла Валерьевна, Руденко Нелли Борисовна, Грачева Наталья Николаевна

В статье описана параллельно-конвейерная реализация решения сеточных уравнений модифицированным попеременно-треугольным итерационным методом (МПТМ), получаемых при численном решенииуравнений математической физики. Наибольшие вычислительные затраты при использовании указанного метода приходятся на этапы решения системы линейных алгебраических уравнений (СЛАУ) с нижнетреугольной и верхнетреугольной матрицами. Представлен алгоритм решения СЛАУ с нижнетреугольной матрицей на графическом ускорителе с использованием технологии NVIDIA CUDA. Для реализациипараллельно-конвейерного метода использовалась трехмерная декомпозиция расчетной области. Она делится по координате y на блоки, количество которых соответствует количеству потоковых мультипроцессоровGPU, задействованных в вычислениях. В свою очередь, блоки разделяются на фрагменты по двум пространственным координатам - x и z. Представленная графовая модель описывает взаимосвязь между соседнимифрагментами расчетной сетки и процессом конвейерного расчета. По результатам проведенных вычислительных экспериментов получена регрессионная модель, описывающая зависимость времени расчета одногошага МПТМ на GPU, вычислены ускорение и эффективность расчетов СЛАУ с нижнетреугольной матрицей параллельно-конвейерным методом на GPU при задействовании различного количества потоковыхмультипроцессоров.

Сохранить в закладках
ПРИМЕНЕНИЕ МЕТОДА ПРОЕКТИРОВАНИЯ Q-ЭФФЕКТИВНЫХ ПРОГРАММ ДЛЯ АЛГОРИТМА ДЕЙКСТРЫ (2023)
Авторы: Алеева Валентина Николаевна, Манатин Павел Андреевич

Проблема повышения эффективности параллельных вычислений чрезвычайно актуальна. В статье впервые продемонстрировано применение концепции Q-детерминанта для эффективной реализации алгоритма на графах. Концепция Q-детерминанта основана на унифицированном представлении численных алгоритмов в форме Q-детерминанта. Q-детерминант позволяет выразить и оценить внутренний параллелизм алгоритма, а также показать способ его параллельного исполнения. В работе приведены основные понятия концепции Q-детерминанта, необходимые для понимания приведенного исследования. Также описан основанный на концепции Q-детерминанта метод проектирования эффективных программ для численных алгоритмов. Результатом применения метода является программа, полностью использующая ресурс параллелизма алгоритма. Такая программа называется Q-эффективной. В качестве первого применения метода проектирования Q-эффективных программ для алгоритмов на графах описано проектирование программ для реализации алгоритма Дейкстры на параллельных вычислительных системах с общей и распределенной памятью. Приведены также результаты экспериментального исследования разработанных программ, проведенного с помощью суперкомпьютера «Торнадо ЮУрГУ». На основе анализа результатов экспериментального исследования определяются динамические характеристики разработанных программ и выявляются особенности их выполнения. Проведенные в статье исследования дают возможность сделать вывод, что применение концепции Q-детерминанта с целью разработки эффективных программ возможно не только для численных алгоритмов, но и для алгоритмов на графах.

Сохранить в закладках
ПОИСК АНОМАЛИЙ В СЕНСОРНЫХ ДАННЫХ ЦИФРОВОЙ ИНДУСТРИИ С ПОМОЩЬЮ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ (2023)
Авторы: Краева Яна Александровна

В статье представлены результаты исследований по поиску аномалий в сенсорных данных из различных приложений цифровой индустрии. Рассматриваются временные ряды, полученные при эксплуатации деталей машин, показания датчиков, установленных на металлургическом оборудовании, и показания температурных датчиков в системе умного управления отоплением зданий. Аномалии, найденные в таких данных, свидетельствуют о нештатной ситуации, отказах, сбоях и износе технологического оборудования. Аномалия формализуется как диапазонный диссонанс - подпоследовательность временного ряда, расстояние от которой до ее ближайшего соседа не менее наперед заданного аналитиком порога. Ближайшим соседом данной подпоследовательности является такая подпоследовательность ряда, которая не пересекается с данной и имеет минимальное расстояние до нее. Поиск диссонансов выполняется с помощью параллельного алгоритма для графического процессора, ранее разработанного автором данной статьи. Для визуализации найденных аномалий предложены метод построения тепловой карты диссонансов, имеющих различные длины, и алгоритм нахождения в построенной тепловой карте наиболее значимых диссонансов независимо от их длин.

Сохранить в закладках
О НОВОЙ ВЕРСИИ АПЕКС-МЕТОДА ДЛЯ РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ (2023)
Авторы: Соколинский Леонид Борисович, Соколинская Ирина Михайловна

В статье представлена новая версия масштабируемого итерационного метода линейного программирования, получившего название «апекс-метод». Ключевой особенностью этого метода является построение пути, близкого к оптимальному, на поверхности допустимой области от определенной начальной точки до точного решения задачи линейного программирования. Оптимальный путь - это путь движения по поверхности многогранника в направлении максимального увеличения или уменьшения значения целевой функции в зависимости от того, ee максимум или минимум необходимо найти. Апекс-метод основан на схеме предиктор-корректор и состоит из двух стадий: Quest (предиктор) и Target (корректор). На стадии Quest вычисляется грубое начальное приближение задачи линейного программирования. Основываясь на этом начальном приближении, на стадии Target вычисляется решение задачи линейного программирования с заданной точностью. Основная операция, используемая в апекс-методе, - это операция, которая вычисляет псевдопроекцию, являющуюся обобщением метрической проекции на выпуклое замкнутое множество. Псевдопроекция используется как на стадии Quest, так и на стадии Target. Представлен параллельный алгоритм, использующий фейеровское отображение для вычисления псевдопроекции. Получена аналитическая оценка ресурса параллелизма для этого алгоритма. Также приведен алгоритм, реализующий стадию Target, и доказана его сходимость. Описаны вычислительные эксперименты на кластерной вычислительной системе по применению апекс-метода для решения различных задач линейного программирования.

Сохранить в закладках