Статьи в выпуске: 4
Анализ временных рядов и прогнозирование являются одной из широко исследуемых областей. Идентификация с помощью различных статистических методов, нейронных сетей или математических моделей уже давно используется в различных областях исследований от промышленности, до медицины, социальной сферы, аграрной среды. В статье рассматривается параллельный вариант алгоритма идентификации параметров квазилинейного рекуррентного уравнения для решения задачи регрессионного анализа с взаимозависимыми наблюдаемыми переменными, основанный на обобщенном методе наименьших модулей (GLDM). В отличие от нейронных сетей, широко используемых в настоящее время в различных системах прогнозирования, данный подход позволяет в явном виде получать качественные квазилинейные разностные уравнения, адекватно описывающие рассматриваемый процесс. Это позволяет повысить качество анализа изучаемых процессов. Существенным преимуществом модели, использующей обобщенный метод наименьших модулей, по сравнению с многочисленными нейросетевыми подходами является возможность интерпретации коэффициентов модели с точки зрения задачи исследования и использование полученного уравнения в качестве модели динамического процесса. Проведенные вычислительные эксперименты с использованием временных рядов показывают, что максимальное ускорение алгоритма происходит при использовании количества потоков, равного половине возможных потоков для данного устройства.
В параллельных планировщиках задач, работающих по стратегии work-stealing, каждый процессор имеет свой дек задач. Один конец дека используется для добавления и извлечения задач только владельцем, а другой - для перехвата задач другими процессорами. В статье предлагается обзор методов управления work-stealing деками, которые используются при реализации work-stealing планировщиков параллельных задач, а также представлено описание поставленных и решенных нашим коллективом задач оптимального управления деками для стратегии work-stealing. Принцип алгоритмов оптимального управления деками в двухуровневой памяти заключается в том, что при переполнении выделенного участка быстрой памяти происходит перераспределение элементов (задач) дека между уровнями памяти. В быстрой памяти остаются элементы из концов дека, так как с ними будет происходить работа в ближайшее время, а элементы средней части дека хранятся в медленной памяти. В таком случае необходимо определить оптимальное количество элементов, которое нужно оставить в быстрой памяти, в зависимости от критерия оптимальности и параметров системы.
В статье исследован метод определения вектора движения по гиперплоскостям, ограничивающим допустимый многогранник многомерной задачи линейного программирования на основе визуальных образов, подаваемых на вход нейронной сети прямого распространения. Алгоритм визуализации строит в окрестности точки, расположенной на ограничивающей гиперплоскости, рецептивное поле. Для каждой точки рецептивного поля вычисляется скалярное смещение до поверхности гиперплоскости. На основании вычисленного смещения каждой точке рецептивного поля присваивается скалярная величина. Полученный визуальный образ подается на вход нейронной сети прямого распространения, которая вычисляет на ограничивающей гиперплоскости направление максимального увеличения целевой функции. В статье предложена усовершенствованная форма крестообразного рецептивного поля. Описано построение обучающего множества на основе случайно сгенерированных ограничивающих гиперплоскостей и целевых функций в многомерных пространствах. Разработана масштабируемая архитектура нейронной сети с изменяемым числом скрытых слоев. Произведен подбор гиперпараметров нейронной сети. В вычислительных экспериментах подтверждена высокая (более 98%) точность работы крестообразного рецептивного поля. Исследована зависимость точности результатов нейронной сети от числа скрытых слоев и продолжительности обучения.
Оценка производительности добычи полезных ресурсов, в том числе определение геометрических размеров объектов горной породы в открытом карьере, является одной из наиболее важных задач в горнодобывающей промышленности. Задача фрагментации горных пород решается с помощью методов компьютерного зрения, таких как экземплярная сегментация или семантическая сегментация. В настоящее время для решения таких задач для цифровых изображений используются нейронные сети глубокого обучения. Нейронные сети требуют больших вычислительных мощностей для обработки цифровых изображений высокого разрешения и больших наборов данных. Для решения этой проблемы в литературе предлагается использование облегченных архитектур нейронных сетей, а также методов оптимизации производительности, таких как параллельные вычисления с помощью центральных, графических и специализированных процессоров. В обзоре рассматриваются последние достижения в области нейронных сетей глубокого обучения для решения задач компьютерного зрения применительно к фрагментации горных пород и вопросы повышения производительности реализаций нейронных сетей на различных параллельных архитектурах.