Архив статей журнала
Известно, что развитие биомедицинских технологий увеличивает спрос на создания биосовместимых материалов, которые обладали бы схожими свойствами с костной тканью и подходили для его имплантации. Многие композиционные материалы представляют собой мультифазные системы, состоящие из полимерной матрицы и неорганического компонента различных форм и размеров. Полимерная составляющая необходима для улучшения механических и биосовместимых свойств. Данный компонент может быть представлен биосовместимым, макропористым и нетоксичным полимером, продукты распада которого будут приниматься организмом за обычные метаболиты и будут выводиться из него. Неорганический компонент может быть представлен гидроксиапатитом, состав и структура которого аналогичны костному апатиту, что обеспечивает взаимную интеграцию и образование химических связей между фповреждённой костью и имплантатом. В физиологических условиях происходит образование кальций-фосатного слоя, что обеспечивает биологическую активность гидроксиапатита. Кальций-фосфатный слой может характеризоваться различной структурой и составов, так как происходит взаимодействие с ионами, находящимися в физиологических жидкостях организма.
В настоящем исследовании продемонстрировано влияние электронно-пучковой обработкой на структуру и фазовый состав композиционного покрытия с металлической матрицей системы TiB2-Ag, нанесенное по средствам электрического взрыва. Фазовый состав и структура покрытий были исследованы при помощи методов рентгеноструктурного анализа, сканирующей и просвечивающей электронной микроскопии. Фазовый состав покрытий, полученных электровзрывным методом, варьируется от образца к образцу. Воздействие электронно-пучковой обработки привело фазовый состав покрытий к единообразию. Основными фазами после модификации покрытия электронным пучком являются Ag, TiB2 и B2O. Увеличение плотности энергии и длительности импульса приводит к уменьшению содержания легкоплавкой фазы Ag и образованию медьсодержащих фаз за счет нагрева и плавления медной подложки избыточной энергией электронного пучка. Структура покрытия представлена серебряной матрицей с включениями в виде частиц TiB2. Влияние электронно-пучковой обработки на структуру покрытия носит слабовыраженный характер. Однако под действием электронного пучка микроструктура покрытия трансформировалась в ячеистую кристаллизационную структуру. Наноструктура серебряной матрицы была преобразована в нанокристаллическую структуру со средним размером кристаллов от десятков до сотен нанометров.
Пятикомпонентные высокоэнтропийные сплавы ВЭС типа сплава CoCrFeNiMn Кантора, обладающие хорошим сочетанием прочностных и пластических свойств и имеющие благоприятные перспективы практического использования, вот уже более четверти века активно исследуются во всем мире. В статье представлен краткий обзор публикаций в основном зарубежных исследователей по поиску направлений изменения, (улучшения) свойств этих сплавов и их практическому применению. Проанализированы теоретические и экспериментальные работы, свидетельствующие о возможности электронных структур в формировании свойств высокоэнтропийных сплавов. Изучение магнитных свойств ВЭС, может дать важную дополнительную информацию об их электронной структуре. На примере ВЭС (CoCrFeMn)1- х Ni х, содержащих пять ферромагнитных элементов, прослежена эволюция магнитной природы с изменением температуры. Обращено внимание на необходимость ускорения масштабного практического применения ВЭС. Показаны трудности и сдерживающие факторы практического использования ВЭС и пути их преодоления. В этом направлении проведен анализ публикаций в зарубежной печати о путях создания ВЭС из отходов (лома) машиностроительной и металлургической промышленности. Выполнено сравнение структурно-фазовых состояний и механических свойств ВЭС, изготовленных из чистых составляющих элементов и отходов, содержащих нержавеющую сталь, нихром, кобальтовые сплавы.