ISSN 1811-1416 · EISSN 3034-3933
Язык: ru

ФУНДАМЕНТАЛЬНЫЕ ПРОБЛЕМЫ СОВРЕМЕННОГО МАТЕРИАЛОВЕДЕНИЯ

Архив статей журнала

ВЛИЯНИЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА ВЫСОКОПРОЧНОГО ЧУГУНА ВЧ 50 (2024)
Выпуск: Т. 21 № 1 (2024)
Авторы: Гурьев Михаил Алексеевич, Иванов Сергей Геннадьевич, Романенко Вероника Викторовна, Аугсткалн Артур Игоревич, Зенин Михаил Николаевич, Черных Евгения Владимировна, Гурьев Алексей Михайлович

В работе представлены результаты микроструктурного анализа высокопрочного чугуна ВЧ 50. Степень глобулярности включений графита определяли через фактор формы F2, который в свою очередь определяется как отношение диаметров вписанной в частицу окружности к диаметру окружности, описанной вокруг частицы: чем ближе данное отношение к 1, тем выше степень глобулярности. Из данных о факторе формы F2 включений графита следует, что только 32,7 об. % графитных включений имеют близкую к глобулярной форму. Это свидетельствует о нарушении технологии модификации чугуна и получении в образце недомодифицированного графита. Проведенные исследования также показали, что представленный на исследование образец чугуна не проходил термической обработки, либо, в случае проведения термической обработки, она проводилась с неправильными параметрами: вероятнее всего температура термической обработки была меньше рекомендованной температуры (700 °С). Нарушение технологии модификации и дальнейшей термической обработки отливки приводит к ухудшению эксплуатационных характеристик чугуна. Проведение повторной термической обработки по правильному режиму позволило улучшить микроструктуру и нивелировать эти недостатки. После повторной термической обработки в виде отжига при температуре 700 °С в течение 4 часов с последующим охлаждением до 400 °С вместе с печью, далее - на воздухе, позволило увеличить долю сфероидизированных частиц графита с 32,7 до 65 об. %. Отжиг проводили с целью повышения прочностных свойств материала, а также пластичности и ударной вязкости.

Сохранить в закладках
ОЦЕНКА ВЛИЯНИЯ РЕЖИМОВ ТЕРМИЧЕСКОЙ ОБРАБОТКИ С ИСПОЛЬЗОВАНИЕМ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУР НА МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛИ ШХ15. ЧАСТЬ I: ВЛИЯНИЕ РЕЖИМОВ ТЕРМООБРАБОТКИ НА ТВЕРДОСТЬ, ПРОЧНОСТЬ И УДАРНУЮ ВЯЗКОСТЬ (2024)
Выпуск: Т. 21 № 1 (2024)
Авторы: Земляков Сергей Анатольевич, Зенин Михаил Николаевич, Иванов Сергей Геннадьевич, Гурьев Михаил Алексеевич, Черных Евгения Владимировна, Гурьев Алексей Михайлович, Зюзин Денис Игоревич, Спицын Алексей Евгеньевич

Присутствие остаточного аустенита после закалки конструкционной подшипниковой стали ШХ15 часто приводит к более низкой твердости и ударной вязкости, что нежелательно при изготовлении деталей прецизионного назначения. В настоящей работе установлена взаимосвязь структурных изменений вызванных разными режимами термической обработкой с механическими свойствами стали ШХ15, в том числе с применением обработки при отрицательных температурах как продолжение закалки. Исследовалось влияние отпуска при температурах 170 °C и 260 °C, сопряженного с обработкой холодом при -60 °C и криогенной обработкой в жидком азоте при -196 °C, на механические свойства закаленной стали ШХ15. Повышение температуры отпуска стали до 260 °С приводит к снижению всех показателей механических и эксплуатационных свойств (σв, КС и HRC). Обработка холодом и криогенная обработка способствуют увеличению доли мартенсита, сопровождающееся снижением остаточного аустенита, что вызывает повышение твердости. Наиболее оптимальной совокупностью механических, а следовательно, и эксплуатационных свойств будет обладать сталь ШХ15, подвергнутая закалке с температуры 845 °С, обработке холодом при -60 °С и последующему отпуску при 170 °С.

Сохранить в закладках
ФОРМИРОВАНИЕ СТРУКТУРЫ И СВОЙСТВ ТИТАНОВОГО СПЛАВА В ИЗДЕЛИЯХ, ИЗГОТОВЛЕННЫХ С ПРИМЕНЕНИЕМ СВЕРХПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ (2024)
Выпуск: Т. 21 № 1 (2024)
Авторы: Лутфуллин Рамиль Яватович

Использование сверхпластической деформации (СПД) позволяет технологически успешно решать проблемы формообразования при изготовлении изделий сложного профиля, в частности, полых конструкций. Успешность изготовления деталей определяется не только высокой точностью воспроизведения геометрической формы, но и достижением заданных механических свойств материала в готовом изделии. Свойства титановых сплавов определяются не только структурой, но и химическим составом. Особенностью СПД является ускоренный рост зерен за счет существенной активизации диффузионных процессов по границам зерен, выравнивание зерен по размеру, сохранение их равноосности, повышение однородности распределения легирующих элементов внутри зерен и фаз, размытие кристаллографической структуры. Между тем, не только структура, но и химическая композиция сплава непрерывно эволюционируют в процессе его технологической обработки. Для ответственных авиационных деталей вопрос локальной или общей загрязненности титанового сплава легкими элементами, такими как азот, углерод, кислород, водород, может оказаться критичным с точки зрения достижения необходимого качества. В этой связи пути гарантированного обеспечения высокого качества деталей, полученных с использованием сверхпластичности (СП) связаны в первую очередь предотвращением загрязненности титанового сплава указанными вредными примесями. Такими путями являются - снижение температуры СПД за счет использования ультрамелкозернистых (УМЗ) исходных заготовок, а также существенное сокращение длительности нахождения титанового сплава при повышенных температурах на всех технологических этапах с обязательным применением защитной атмосферы или вакуума.

Сохранить в закладках
ОЦЕНКА ВЛИЯНИЯ РЕЖИМОВ ТЕРМИЧЕСКОЙ ОБРАБОТКИ С ИСПОЛЬЗОВАНИЕМ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУР НА МЕХАНИЧЕСКИЕ СВОЙСТВА СТАЛИ ШХ15. ЧАСТЬ II: ВЛИЯНИЕ РЕЖИМОВ ТЕРМООБРАБОТКИ НА СТРУКТУРНО-ФАЗОВОЕ СОСТОЯНИЕ И МИКРОСТРУКТУРУ (2024)
Выпуск: Т. 21 № 2 (2024)
Авторы: Земляков Сергей Анатольевич, Зенин Михаил Николаевич, Иванов Сергей Геннадьевич, Гурьев Михаил Алексеевич, Черных Евгения Владимировна, Гурьев Алексей Михайлович, Зюзин Денис Игоревич

Наличие остаточного аустенита нежелательно в случае изготовления из стали ШХ15 деталей прецизионного назначения в силу того, что при эксплуатации неизбежно его превращение в мартенсит, следствием которого является изменение геометрических размеров деталей, что в итоге может привести к заклиниванию прецизионных пар, либо образованию трещин и выходу из строя прецизионного узла или агрегата. В настоящем исследовании показано изменение структурно-фазового состояния и микроструктуры закаленной конструкционной стали ШХ15 в зависимости от режима температуры отпуска и обработки холодом. Установлено, что стимуляция мартенситного превращения путем обработки холодом либо криогенной обработки приводит к дроблению аустенитных включений, незначительно снижая при этом общее содержание остаточного аустенита. Размер карбидных включений в случае обработки холодом либо криогенной обработки можно считать инвариантным, при этом общее количество частиц карбидных выделений увеличивается в 6,5 и в 8,4 раза соответственно в случае обработки холодом при -60 °С и криогенной обработке при -196 °С по сравнению с традиционной термической обработкой.

Сохранить в закладках
ТЕРМИЧЕСКАЯ ОБРАБОТКА ВЫСОКОПРОЧНОГО ЧУГУНА ВЧ 50 С ЦЕЛЬЮ УЛУЧШЕНИЯ ЕГО СТРУКТУРЫ (2024)
Выпуск: Т. 21 № 4 (2024)
Авторы: Иванов Сергей Геннадьевич, Гурьев Михаил Алексеевич, Романенко Вероника Викторовна, Зенин Михаил Николаевич, Гурьев Алексей Михайлович

В работе представлены результаты микроструктурного анализа высокопрочного чугуна ВЧ 50, полученного методом литья в холодно-твердеющие смеси. Для металлографического анализа взяты образцы лопатки дробеметной установки, в составе которых достаточно много цементита (от 8,00 до 14,36 об. %). При большом увеличении явно видна структура эвтектики, представляющая собой смесь цементита и перлита. Чугуны, в составе которых наряду с графитом присутствует цементит, имеют повышенную твердость, большую хрупкость, плохо обрабатываются резанием и могут применяться только после графитизирующего отжига, который исправляет этот литейный брак. Для улучшения структуры был проведен отжиг при температуре 700 °С, который позволил гомогенизировать структурно - фазовое состояние и понизить твердость материала примерно в 2 раза. Повторная термообработка позволила получить равновесную структуру с мартенситной матрицей, повысить пластичность и ударную вязкость материала образцов на 20-27 %.

Сохранить в закладках