Архив статей журнала
Работа посвящена расчетному моделированию с использованием ПК Serpent и MCNP5 экспериментальных конфигураций сборок стенда БФС с центральной легководной вставкой (БФС-93) и без нее (БФС-57 и БФС-59). Данное моделирование необходимо, с одной стороны, для верификации программных комплексов для расчета реактора ВВЭР-С. С другой стороны - для верификации расчетных подходов, необходимость проведения которой связана с возрастающей потребностью в расчетном планировании экспериментов, предшествующих экспериментальному моделированию реактора ВВЭР-С на стенде БФС, и анализе результатов. Это связано с тем, что в основе работы реактора ВВЭР-С лежат новые физические принципы: возможность воздействовать на реактивность путем изменения водо-топливного отношения и, соответственно, спектра нейтронов в активной зоне. Другой особенностью моделируемого реактора является применение в его загрузке уран-плутониевого топлива с использование плутония из ОЯТ ВВЭР, которое обуславливает несколько более жесткий, по сравнению с урановым топливом, спектр нейтронов, формирование которого происходит путем реализации сложной совокупности физических процессов. В работе проведен расчетный анализ следующих экспериментов: расчеты на критичность, аксиальное и радиальное распределения энерговыделения, спектральные индексы и аксиальное распределение скоростей реакций деления в измерительном канале. Расчетный анализ данных экспериментов расширяет верификационный базис, а полученные результаты могут быть использованы для верификации программных средств, аттестация которых планируется применительно к расчетам реактора ВВЭР-С. Разработка программы исследований потребовала выполнения значительного количества нейтронно-физических расчетов, при этом для них выбраны те экспериментальные конфигурации критических сборок, которые наиболее близко отражают физические и спектральные эффекты, а также топливные составы.
В статье рассматривается возможность экспериментального обоснования работоспособности твэлов с МОКС-топливом и аксиальной прослойкой для перспективного реактора БН-1200М. Введение аксиальной воспроизводящей прослойки в активную зону обеспечивает возможность соответствующего увеличения кампании ТВС и выгорания МОКС-топлива за счет снижения уровня максимальной плотности нейтронного потока. Представлена информация по опыту облучения ЭТВС с МОКС-топливом на реакторе БН-600. Реакторные испытания твэлов с аксиальной воспроизводящей прослойкой в составе ЭТВС при условиях эксплуатации, соответствующих БН-1200М, будут проводиться впервые. С учетом новизны конструкции намечено разместить только четыре твэла с аксиальной прослойкой в твэльном пучке с гомогенным топливным столбом без прослойки. Приведены целевые параметры эксплуатации твэлов БН-1200М, показано их достижение при облучении экспериментальных твэлов с аксиальной прослойкой в составе КЭТВС-МАК в БН-600. В статье представлен график проведения реакторных испытаний КЭТВС-МАК. Запланировано облучение трех КЭТВС-МАК. По результатам облучения первой КЭТВС-МАК будут получены экспериментальные данные по поведению слоев топливных композиций на границе топлива и воспроизводящей прослойки. Облучение двух последующих КЭТВС-МАК будет проводиться с поэтапным увеличением выгорания МОКС-топлива. Показано влияние КЭТВС на нейтронно-физические характеристики активной зоны и параметры эксплуатации штатных ТВС.
Система диагностирования реакторной установки (СДРУ) БН-800 находится в промышленной эксплуатации на 4-м блоке Белоярской АЭС с 2016 года. СДРУ проводятся для комплексного контроля РУ и выявления на ранней стадии отклонений от правил эксплуатации и аномалий реактивности, температурным и нейтронно-шумовым методами. В статье приведены результаты анализа параметров СДРУ, характерных флуктуаций мощности и реактивности реактора БН-800, при работе реактора с урановой загрузкой активной зоны и при переходе на уран-плутониевое МОКС-топливо в 7-12 микрокампаниях (МК). Показано, что после перехода на МОКС-топливо флуктуации производительности и реактивности в начале повышенияМКли почти в 2 раза. При этом к завершению каждого МК наблюдаются уровни флуктуации, активности и реактивности, снижающиеся до общих для всех анализируемых уровней МК. Отмечено, что после завершения перехода на МОКС-топливо, происходит повышенный уровень флуктуации мощности, регулирующие стержни СУЗ в начале МК перемещаются в ~ 40 раз чаще, чем в конце МК. Более интенсивный режим работы регуляторов увеличивает реальную работу приводов регулирующих стержней и может зависеть от ресурсных характеристик электромеханического оборудования.
Статья посвящена анализу результатов расчета реакторных экспериментов, проведенных на энергоблоках с ВВЭР-1000 и ВВЭР-1200 с использованием кода ATHLET/BIPR-VVER (версия 1.0) полномасштабного согласованного нейтронно-физического и теплогидравлического моделирования процессов в ВВЭР. Моделирование проводилось с целью валидации кода ATHLET/BIPR-VVER. Отобранные для моделирования процессы мультифизичны, в них происходит взаимодействие нейтронно-физических и теплогидравлических явлений. В ходе экспериментов проводилась подробная регистрация параметров энергоблока. В статье освещены основные приближения кода ATHLET/BIPR-VVER и представлены результаты моделирования экспериментов. Экспериментальные данные и результаты моделирования имеют достаточную полноту и точность представления для подготовки соответствующих бенчмарков. Приводятся описание следующих экспериментов: - отключение одного из четырех ГЦНА на энергоблоке ВВЭР-1000; - подключение одного ГЦНА к трем работающим на энергоблоке ВВЭР-1200; - переход на режим естественной циркуляции при вводе в эксплуатацию энергоблока ВВЭР-1200. Результаты моделирования описанных экспериментов с использованием кода ATHLET/BIPR-VVER показывают хорошее совпадение с экспериментальными данными и подтверждают паспортную точность расчета физических и теплогидравлических характеристик.
Статья посвящена обсуждению матрично-экспоненциального метода (МЭКСП) обработки экспериментальной кривой N(t) — счета или тока детектора нейтронов для получения временной зависимости реактивности ρ(t) при возмущении размножающей нейтроны системы. Проведено сравнение результатов расчетов реактивности по новому методу с результатами полученными традиционным методом ОРУК в точечном приближении. Показано, что расхождение экспериментальных данных о подкритичности размножающей нейтроны системы, полученных при обработке в точечном приближении показаний от детекторов нейтронного потока, находящихся геометрически в разных местах около системы, может достигать 60 %. Рассмотрена схема учета пространственно-энергетических эффектов (ПЭЭ) при определении реактивности. Данная схема является новой. В рассмотренном в статье примере показано, как применение предложенной схемы учета ПЭЭ при проведении эксперимента типа «разгон — сброс» уменьшает разброс показаний детекторов о подкритичности исследуемой системы примерно в пять раз по сравнению с обработкой в точечном приближении. Проведена расчетная оценка вклада неточности данных о запаздывающих нейтронах в погрешность реактивности с использованием вероятностного подхода. Результаты расчетной оценки заключаются в выявлении того факта, что изменение случайным образом всех λi и βi в пределах ± 5 % при расчете подкритичности системы приводит к ее отклонению в пределах ± 3 % с вероятностью около 80 %.
БФС-2 — крупнейший в мире физический стенд, размеры (высота бака — 3 м, диаметр — 5 м) и реакторные материалы которого позволяют осуществлять полномасштабное моделирование активных зон и экранов быстрых реакторов мощностью до 3000 МВт (эл.), а также внутрикорпусных защит и внутриреакторных хранилищ, в том числе и энергетических реакторов на быстрых нейтронах, охлаждаемых жидким свинцом. Изготовленные новые реакторные материалы в герметических оболочках позволяют выполнять широкий круг исследований активной зоны реактора БРЕСТ-ОД-300 на плотном смешанном уран-плутониевом нитридном топливе (СНУП). Программа экспериментов на модели реактора БРЕСТ-ОД-300 была начата с набора критической массы заданной конфигурации — сборка БФС-88. Выполнена оценка чувствительности камеры деления КНТ-54-1 (потенциально пусковая камера БРЕСТ-ОД-300) при облучении ее нейтронами разных спектров. В работе приводятся результаты экспериментов, важных для безопасности работы реактора БРЕСТ-ОД-300. Свинцовый пустотный эффект реактивности (СПЭР) измерялся методом обратного умножения в области, имеющей форму трапеции и простирающейся от центрального постоянного компенсатора реактивности до границы со свинцовым отражателем. Система пассивной обратной связи (СПОС) моделировалась областью из 120 стержней свинцового отражателя, прилегающей непосредственно к активной зоне, а ее эффективность определялась также методом обратного умножения при порционном удалении свинца по высоте в группах входящих в нее стержней.
В настоящей работе представлены результаты моделирования методом Монте-Карло нейтронных процессов в счетчике множественности нейтронов RENMC в программной среде SERPENT. Цель заключается в расчете калибровочных коэффициентов: эффективности регистрации нейтронов и коэффициента отбора совпадений, с учетом их зависимости от нейтронно-физических свойств анализируемых образцов. Созданная модель апробирована на аттестованных объектах металлического плутония АО 95 505/531-44-2021, СП-1 и диоксида плутония ГСО-8454-2003, с которыми были выполнены калибровочные измерения на счетчике RENMC. Развит подход к передаче размера от аттестованных объектов к анализируемым образцам с использованием в качестве методики сравнения построенной математической модели. Рассмотрены результаты измерений с тремя упаковками из ТУК-30 с диоксидом плутония ПО «Маяк», в одном из которых обнаружено повышенное содержание фтора. Данный контейнер был перетарен в 5 контейнеров ВНИИНМ послойно. Всего были проведены расчеты для трех контейнеров ТУК-30 и пяти контейнеров ВНИИНМ. Для уточнения спектра и выхода нейтронов (α, n)-реакции были выполнены расчеты по программе NEDIS 2.0. Результаты работы служат обоснованием применимости разработанной модели счетчика RENMC для корректировки калибровочных коэффициентов в методиках измерений эффективной массы плутония-240.
Создание ядерной энергетической системы нового поколения направлено на реализацию Стратегии устойчивого долгосрочного развития энергетической системы России, повышение доли атомной генерации в выработке электроэнергии, отвечает концепции достижения углеродной нейтральности в области энергетики. Поставленная задача может быть решена путем эффективного замещения выбывающих мощностей электрогенерации энергоблоками нового поколения с реакторами типа ВВЭР и экономически конкурентоспособными реакторами на быстрых нейтронах. При этом развитие проектов инновационных реакторных установок c ВТГР позволит рассматривать возможность использования ядерных технологий в области неэлектрического применения. Повышение ядерной и радиационной безопасности и соответствие требованиям на уровне установок Поколения IV выполняется при проектировании новых реакторов типа ВВЭР, БН, ВТГР. Изменения системных требований, в первую очередь в части технико-экономических показателей, обусловливают развитие проектов, многовариантность организации ЯЭС, что определяет задачи системных исследований сложных энергетических систем с применением широкого набора критериев, включая критерии неэнергетического использования ядерных установок. Развитие ядерных технологий БН и ВТГР обеспечивает повышение уровня безопасности на всех стадиях жизненного цикла объектов ядерной энергетической системы, производство электроэнергии, высокотемпературного тепла, решение задач эффективного использования природного ядерного топлива, замыкания ядерного топливного цикла, наработку радиоактивных изотопов, продуктов технологического цикла, развитие международного бизнеса.
- 1
- 2