Архив статей журнала
Нестабильность на рынке общественного питания в связи с пандемией COVID-19 и санкциями обострила потребность в разработке эффективного инструмента оценки рисков дефолта в этой отрасли. Качество прогнозирования дефолта в значительной степени зависит от того, насколько хорошо модель соответствует конкретной среде. В связи с этим необходимо внести некоторые коррективы, чтобы адаптировать классические модели прогнозирования дефолтов к российскому сектору общественного питания. В статье выдвинута гипотеза о том, что добавление нефинансовых факторов и использование современных методов прогнозирования может существенно повысить точность моделей. Целью данного исследования является определение влияния включения нефинансовых факторов и современных методов моделирования на точность прогнозирования дефолтов для предприятий общественного питания в России. Тесты на выборке из 1 241 фирмы за период с 2017 по 2021 г. показали, что создание модели прогнозирования с помощью современных методов, таких как Random Forest и XGBoost, повышает точность прогнозирования с 70 % до примерно 80 %, по сравнению со стандартной логит-моделью. Добавление в модели нефинансовых факторов также несколько повышает точность, однако не дает существенного эффекта. Важнейшими метриками в прогнозировании дефолта оказались коэффициент текущей ликвидности и отношение оборотного капитала к совокупным активам. Наиболее важными нефинансовыми факторами являются совокупные активы и возраст. Наши результаты согласуются с уже существующими исследованиями в этой области и формируют новый пласт знаний за счет применения в конкретной отрасли. Результаты могут быть использованы банками или другими контрагентами, которые взаимодействуют с предприятиями общественного питания, для оценки их кредитного риска.
Исследование посвящено проблеме дифференциации доходов населения регионов России. Целью работы является разработка методики анализа процессов дифференциации доходов населения регионов России на базе теории динамических систем и машинного обучения, а также ее апробация на фактическом аналитическом материале. Гипотеза исследования заключается в предположении одновременного сосуществования процессов конвергенции и дивергенции дифференциации доходов населения регионов России, зависящих от внешних и внутренних факторов. Указанные процессы являются объектом исследования. Информационной базой исследования являются данные Росстата о значениях индекса Джини 80 регионов за период с 1995 по 2018 г. Для построения экспериментальных траекторий помимо индекса Джини использованы две независимые динамические переменные - его первая и вторая производные по времени, что позволило построить три различных пространства состояний (от одномерного до трехмерного). Методом кластеризации «k-средних» всё наблюдавшееся множество состояний было разделено на пять кластеров, количество которых было предварительно определено тестом «на осыпь» («метод локтя»). В результате расчетов было доказано преобладание конвергентных процессов над дивергентными в течение исследованного периода. Было обнаружено, что индивидуальные траектории движения отдельных регионов в пространстве состояний существенно отличаются: траектории некоторых регионов могут быть локализованы в пределах только одного кластера, тогда как отдельные части траекторий других могут принадлежать одновременно нескольким кластерам. Подавляющее большинство траекторий расположены в пределах 2-3 кластеров. Теоретическая значимость полученных результатов заключается в углублении представлений о региональной специфике динамики изменений дифференциации доходов населения субъектов Федерации. Практическая значимость результатов исследования заключается в расширении инструментальной поддержки принятия решений при реализации государственной политики в сфере регулирования дифференциации доходов населения на региональном уровне.