Панорамная визуализация потока или теплоотдачи на поверхностных моделях является эффективным и информативным методом исследования направления в пограничном слое. Вследствие развития цифровых и технических возможностей научные исследования все более основаны на анализе больших данных с помощью искусственного интеллекта (ИИ). Насколько оправдано применение тех или иных методов ИИ в каждой конкретной задаче, пока открытый вопрос. Цель работы - обзор результатов применения нейронных сетей (НС) и машинного обучения для решения задач диагностики течений с помощью ЖК. А именно, для измерения полей температуры, тепловых потоков и векторов касательного напряжения внешнего трения. Кроме этого, актуальными задачами являются измерение физической характеристики ЖК и получение новых ЖК-смесей. Обсуждаются возможности и ограничения, области применения и перспективы нейросетевого подключения. А также программные средства для его реализации. Анализ литературных данных показал, что применение НС и глубокого машинного обучения для аппроксимации калибровочных зависимостей температуры и касательного напряжения от многофакторного оптического отклика ЖК позволяет получить точность, сравнимую с пределом контрольной выборки.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.