Цель предлагаемой статьи — обосновать применение авторского подхода и методологии, основанных на сочетании технологий машинного обучения и построения направленных графов с их последующей кластеризацией для системного изучения количественных и качественных характеристик рынка государственных закупок и поведения агентов этого рынка. В результате проведенного исследования выделены благодаря инновационному подходу к исследованию, основанному на сочетании технологий машинного обучения и теории сетей и графов, ранее неучтенные региональные и отраслевые факторы, влияющие на взаимоотношения агентов рынка государственных закупок. Систематизированы модели взаимоотношений на этом рынке в авторской трактовке, интегрирующей макроэкономическую ситуацию на рынке и маркетинговые стратегии игроков рынка. Выявлены такие устойчивые шаблоны поведения агентов рынка государственных закупок, как «изоляция», «консерватизм», «мобильность», и обосновано, что изолированное или консервативное поведение игроков рынка повышает вероятность возникновения коррупционных сговоров. Все вышеперечисленное не было системно изучено ранее и имеет научную новизну и высокую практическую значимость. Проведенные исследования способствовали приращению научного знания в прикладном применении теории сетей и графов, в вопросах государственного регулирования экономики, противодействия монополизации рынков и повышении конкуренции. Практические результаты работы связаны с формированием рекомендаций российским органам власти – регуляторам рынка государственных закупок и участникам торгов по выбору эффективных стратегий поведения на рынке.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.