Архив статей журнала
В статье рассматривается использование алгоритмов машинного обучения для обнаружения аномалий на основе набора данных CICIDS2017, который был специально разработан для имитации реальных сценариев сетевых атак. Особое внимание уделено трем популярным алгоритмам: логистической регрессии, случайному лесу и нейронным сетям. Эти алгоритмы были выбраны благодаря своей способности эффективно обрабатывать большие объемы данных и выявлять сложные паттерны. В рамках статьи проведена серия экспериментов, в которых будут варьироваться объем обучающих данных и оцениваться производительность моделей как на чистых, так и на зашумленных данных. Результаты данного исследования помогут понять, как различные алгоритмы реагируют на изменения в объеме данных и качество входной информации, что является важным аспектом для разработки эффективных систем кибербезопасности.
В статье оцениваются методы машинного обучения для задачи прогнозирования когнитивной нагрузки обучающихся в средах электронного обучения с использованием данных отслеживания взгляда. Основная цель исследования – адаптивное вмешательство в реальном времени для предотвращения когнитивной перегрузки и повышения вовлеченности обучающихся в процесс обучения. В исследовании рассматриваются методы контролируемого обучения, такие как машины опорных векторов (SVM), случайный лес (Random Forest) и логистическая регрессия (Logistic Regression), с использованием симулированных данных отслеживания взгляда обучающихся. Проблема и цели исследования четко определены и сопровождаются всесторонним обзором литературы, в котором рассматривается теория когнитивной нагрузки, отслеживание взгляда и методы машинного обучения в образовательных контекстах. Методология сосредоточена на разработке и обучении моделей с использованием k-кратной перекрестной валидации для обеспечения надежности. Результаты исследования показывают, что Random Forest является самым эффективным методом, демонстрирующим способность улавливать сложные закономерности прогнозирования. Ключевой вклад данного исследования заключается в новом применении интеллектуальных методов для прогнозирования когнитивной нагрузки на основе данных отслеживания взгляда, что повышает прогностические возможности методов машинного обучения. Исследование подчеркивает важность реализации этих методов в реальном времени и проверки на реальных данных обучающихся, а также необходимость решения этических вопросов, связанных с использованием данных отслеживания взгляда в образовательных учреждениях.
Мошенничество с банковскими картами является распространенной и усугубляющейся проблемой в финансовом секторе, требующей инновационных решений для точного и эффективного обнаружения. Традиционные методы обнаружения мошенничества, во многих случаях эффективны, но сегодня они сталкиваются с масштабируемостью и сложностью современных схем мошенничества. Недавние достижения в области квантовых вычислений открыли новые пути для решения этих проблем. В статье представлен квантовый анализ потоков транзакций (QTF A) – инновационная квантовая методология для улучшения обнаружения мошенничества с банковскими картами. QTFA использует принципы квантовой механики, такие как суперпозиция, запутанность и квантовая оптимизация, для моделирования и анализа потоков транзакций в квантовой сети. Представляя транзакции как квантовые состояния, а их отношения как запутанности, QTFA обеспечивает точное обнаружение аномалий с помощью квантовых измерений. Экспериментальные результаты показывают, что QTFA превосходит классические методы машинного обучения, такие как случайные леса и опорные векторные машины (SVM), достигая 98-процентной точности (accuracy), 10-процентного снижения ложных срабатываний и улучшенной полноты (recall). В статье также рассматривается интеграция QTFA в реальные системы, подчеркивается ее потенциал для революционных изменений в обнаружении мошенничества, а также определяются текущие ограничения и направления будущих исследований.