Архив статей журнала
Климатическая система рассматривается как колебательная система со
своими собственными частотами. При внешних воздействиях колебательные системы выходят из состояния равновесия и в них возникают колебания на собственных частотах. Частоты этих колебаний обусловлены только свойствами самой системы. Многократные повторяющиеся даже очень слабые, но резонансные воздействия на систему с периодом ее собственных колебаний могут раскачать систему на ее собственных частотах до колебания с заметной амплитудой. Малая величина повторяющихся воздействий
космоса на климатическую систему не является препятствием для модуляции в ней
резонансных колебаний и биений. Предложена гипотеза о резонансной природе воздействий космоса на климатическую систему: повторяющиеся слабые переменные воздействия космических факторов на Землю возбуждают колебания погоды и климата атмосферы и океана на их собственных частотах через механизм резонансов, включая резонансы на соизмеримых частотах. Резонансный механизм усвоения космических воздействий климатической системой согласуется с резонансным механизмом взаимодействий всех космических тел в солнечной системе. В результате слабых внешних циклических воздействий на оболочки Земли (океан и атмосфера) из всех возможных колебаний на собственных частотах дополнительную раскачку получают только те, которые находятся в резонансных соотношениях с циклическими внешними воздействиями. Слабость внешних сил может компенсироваться многократным их
резонансным воздействием. Резонансное внешнее воздействие усиливает колебания каждого компонента климатической системы на избранных его собственных частотах.
По данным о температуре поверхности океана обнаружены календарные особенности
(сезонные интервалы наиболее частых аномалии температуры) которые рассматриваются как результат биений собственных колебаний ТПО и колебаний, вызванных изменениями
склонения Луны.
Предпринимается попытка конкретизировать содержание уровня принципов симметрии, который был введён в рассмотрение Ю. Вигнером. Предлагаются аналитические выражения, объединяющие три уровня иерархии: система – подсистема – предельный случай, что позволяет рассматривать разнородные системы отношений различного
масштаба как конструкцию, наделённую общими связями. Основой моделирования является предложенная ранее протоструктура, которая представляется на числовой оси и понимается как инструмент анализа процессов самоорганизации (перехода от одного вида порядка к другому).
В системе разрешенные состояния формируются с помощью протоструктуры и образуют
отдельные уровни. Наиболее значимым среди них является уровень параметра порядка.
Выявленные для системы связи между позициями параметра порядка и подчинёнными ему характеристиками распространяются на подсистему и предельный случай с помощью
масштабных коэффициентов, которые конструируются на основе структурных соображений.
Установленные связи проверяются на примере Солнечной системы в плоскости
эклиптики. В качестве параметра порядка выступает относительный момент количества
движения. Применимость выявленных связей для планетной системы и спутниковых
подсистем демонстрируется при обращении к известным относительным характеристикам
планет и Солнца. При этом отношения масс планет и Солнца рассматриваются как масштабные коэффициенты. Атом водорода трактуется как предельный случай при использовании дополнительного масштабного коэффициента, в роли которого выступает отношение сил в атоме водорода. Согласие модельных и наблюдательных данных имеет место в пределах долей процента.