Архив статей журнала
Диагностика болезни Альцгеймера на ранней стадии развития играет существенную роль при лечении данного заболевания, поскольку определение тяжести заболевания и риска его прогрессирования позволяет провести профилактические меры своевременно, до того, как сформируются необратимые поражения головного мозга. Болезнь Альцгеймера представляет собой хроническое дегенеративное заболевание, связанное с повреждением нейронов головного мозга. Для диагностики данного заболевания наряду с другими методами используется МРТ головного мозга. Интерес представляют формализованные автоматизированные инструменты анализа МРТ, которые могут служить средством поддержки принятия решений при постановке диагноза. Эффективным механизмом разработки подобных инструментов при наличии большой обучающей выборки могут служить методы глубокого обучения, в частности методы, базирующиеся на построении сверточных нейронных сетей. Обзор исследований в данной области отражает целый ряд успешных вычислительных экспериментов по применению сверточных нейронных сетей к анализу медицинских изображений. В данной работе осуществляется попытка использовать сверточную нейронная сеть (CNN) для классификации стадии болезни Альцгеймера на основе МРТ головного мозга. Выделяются следующие основные классы (уровни заболевания): NonDementia (отсутствие деменции), VeryMildDementia (ранняя деменция), MildDementia (умеренная деменция), ModerateDementia (тяжелая деменция). Предложенная в работе модель демонстрирует хорошее качество с позиции основных метрик классификации, позволяет с большой точностью определять все стадии заболевания, причем, лучше всего определяется класс VeryMildDemented. Распознавание именно данной стадии заболевания очень важно с точки зрения подбора предупреждающего развитие болезни лечения.
В данной обзорной статье представлен анализ основных направлений исследований по теме классификация объектов на изображении методами компьютерного зрения. Методы компьютерного зрения позволяют автоматизировать процесс выделения семантического смысла из изображений. Под классификацией объектов на изображении понимается локализация объектов, интересующих исследователя, и соотнесение их с определенным классом. Актуальность данной темы закреплена в государственной программе: национальная стратегия развития искусственного интеллекта на период до 2030 года. Так же в статье приведена статистика публикационной активности научных авторов по теме «компьютерное зрение», которая показывает актуальность данного направления. Работа имеет следующую структуру: во введении статьи приведены различные статистики, отражающие актуальность темы. Далее приведен обзор научных исследований посвященных решению прикладных аспектов задачи классификации объектов на изображении в различных областях человеческой деятельности. Основной упор сделан на следующие прикладные области: медицина, промышленность, безопасность, транспорт и военное дело. Далее приведен анализ методов, которые используются для решения задачи классификации объектов на изображении. Автор выделяет две группы методов: классические и нейросетевые методы. Под классическими алгоритмами и методами понимается подход к решению задачи классификации объектов на изображении, в котором не используются искусственные нейронные сети. Выводы. Тема исследования на сегодня является актуальной, что подтверждено статистикой и государственными программами. Для классических методов выявлены следующие недостатки: для каждой новой прикладной задачи требуется построение алгоритма ее решения, трудоемкость выделения значимых признаков и неустойчивость при работе с определенными видами данных. Для нейросетевых методов основным недостатком является зависимость конечной модели от качества набора данных, на котором она обучается.