ВЕСТНИК ВОРОНЕЖСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: СИСТЕМНЫЙ АНАЛИЗ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

Архив статей журнала

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ГРАНИЧНЫХ УСЛОВИЙ НА ДИНАМИКУ ГАЗОВЗВЕСИ С ВЯЗКОЙ НЕСУЩЕЙ СРЕДОЙ В КАНАЛЕ (2024)
Выпуск: № 2 (2024)
Авторы: Тукмаков Дмитрий Алексеевич

В данной работе представлена численная модель распространения ударной волны из однородного газа в газовзвесь - взвесь дисперсных частиц в газе. Данная тематика является актуальной в связи с различными промышленными приложениями. Несущая среда описывается как вязкий сжимаемый теплопроводный газ. Математическая модель реализует континуальную методику моделирования динамики неоднородных сред - для каждой из компонент смеси решалась полная гидродинамическая система уравнений движения, учитывался обмен импульсом и теплообмен между компонентами смеси. Система уравнений динамики несущей среды и дисперсной фазы включает в себя уравнения непрерывности плотности, уравнения сохранения пространственных составляющих импульса несущей и дисперсной фазы, уравнения сохранения энергии. Для дисперсной фазы вводится понятие средней плотности - произведения объемного содержания на физическую плотность материала. Объемное содержание является функцией временной и пространственных переменных, физическая плотность материла является постоянной величиной. Уравнения математической модели решались явным конечно-разностным методом Мак-Кормака. Для подавление численных осцилляций применялась схема нелинейной коррекции. Рассматривались два типа граничных условий в канале - однородные граничные условия Неймана на боковых поверхностях канала и однородные граничные условия Дирихле. Рассматривалась газовзвесь с мелкодисперсными частицами и большим объемным содержанием дисперсной фазы, таким образом параметры газовзвеси таковы, что дисперсная фаза оказывает существенное влияние на динамику несущей среды. Выявлено, что в случае однородных граничных условий Неймана возмущение по газовзвеси распространяется быстрее, двухмерное распределение модуля скорости несущей среды является равномерным. При задании однородных граничных условий Дирихле модуль скорости имеет параболический профиль и большее значение, возмущение по среде распространяется с меньшей скоростью, чем возмущение распространяющееся по каналу с однородными граничными условиями Неймана. Полученные результаты могут быть использованы при моделировании течений газовзвсей.

Сохранить в закладках
УПРАВЛЕНИЕ ПРОЦЕССОМ ВУЛКАНИЗАЦИИ НА ОСНОВЕ МОДЕЛИРОВАНИЯ И ОЦЕНКИ КЛЮЧЕВЫХ ПАРАМЕТРОВ МОДЕЛИ (2024)
Выпуск: № 4 (2024)
Авторы: Битюков Виталий Ксенофонтович, Хаустов Игорь Анатольевич, Маслов Александр Александрович, Тихомиров Сергей Германович, Карманова Ольга Викторовна

Решается задача выбора оптимальных параметров процесса вулканизации, обеспечивающая достижения требуемого качества резины. Обзор аналогичных задач показал, что решения реализуются на программной продукции зарубежного происхождения. Основная цель данного исследования - разработка эффективного отечественного программного продукта для расчета температурно-временного режима вулканизации многослойных изделий. Проведён системный анализ процесса, который показал, что неправильно подобранные параметры температуры и времени могут привести к неравномерной вулканизации слоев, тем самым к ухудшению свойств изделия или увеличению затрат на производство. В работе приведено модельное исследование процессов вулканизации, обеспечивающее завершенность процесса в центре многослойного изделия. Основными модельными компонентами являлись уравнения теплопроводности, кинетические уравнения, для которых выполнялась оценка параметров: предэкпоненциальных коэффициентов и энергии активации. Адекватность полученных результатов подтверждается численным экспериментом. На основе результатов моделирования разработано программное обеспечение для выбора управляющий параметров процесса. Архитектурные особенности программы заключаются в реализации модульного подхода. Основные модули позволяют проводить идентификацию параметров математических моделей и проводить имитационное моделирование процесса. Для реализации модуля определения кинетических параметров модели использовался язык программирования Python. Модуль реализован в виде пользовательского интерфейса, который обеспечивает взаимодействие исследователя с системой. Язык Python является кроссплатформенным и обладает большим набором библиотек для решения различных задач математического моделирования промышленных процессов. Модуль для расчета температуры и степени вулканизации для каждого слоя реализует алгоритмы, учитывающие динамику внутри изделия и кинетику химических реакций, связанных с вулканизацией. В результате моделирования, получены рекомендованные управляющие параметры процесса, которые способствуют снижению времени и ресурсов, затрачиваемых на процесс производства.

Сохранить в закладках