Архив статей журнала
The paper еtheorizes the relationship between a redshift in the electromagnetic spectrum of space objects and their gravity and demonstrates it with computational experiments. Redshift, in this case, is a consequence of deceleration of the photons emitted from the surface of objects, which is caused by the gravity of these objects. The photon speed reduction due to the attraction of space gravitating object (GO) is defined as ΔC = C-C ‘, where C’ is a photon speed changed by the time the receiver records it. Then, at photon speed variation between a stationary source and a receiver, the redshift factor is determined as Z = (C-C ‘)/C’. Computational experiments have determined the gravitational redshift of the Earth, the Sun, a neutron star, and a quasar. The graph of the relationship between the redshift and the ratio of sizes to the mass of any space GOs washas been obtained. The findings indicate that the distance to space objects does not depend on the redshift of these objects.