Архив статей журнала
Проведено исследование состояния катода со вставкой из чистого и лантанированного вольфрама при добавлении к плазмообразующему газу аргону пропан-бутана для генератора низкотемпературной плазмы постоянного тока с вихревой стабилизацией дуги и расширяющимся каналом газоразрядного тракта. При малой добавке пропана
(1 %) в аргоновой среде, происходит осаждение углерода на границе раздела между вольфрамом и корпусом катода из меди со скоростью 0,2 мм/мин. На аноде осаждение при данном расходе не обнаружено.
Представлены результаты исследования плазменного пиролиза метана с использованием плазмотрона постоянного тока с полыми электродами. Дуговая мощность
плазмотрона составляла 40–50 кВт, расход метана 0,7–1,6 г/с, соотношение расходов метана, подаваемого в реактор и плазмотрон, варьировалось в диапазоне 0–1,63.
Показано, что при увеличении отношения этих потоков концентрация водорода
уменьшается, при этом растет доля не превращённого метана. Зависимость выхода
ацетилена проходит через максимум в диапазоне отношений 0,6–1,3 с достижением
объемной концентрации на уровне 10,52 %. Степень конверсии метана в плазмотроне
достигает 98–99 %, а объемная концентрация водорода – 92–97 %.
Рассматриваются особенности плазмохимического процесса получения карбида вольфрама с использованием плазмотрона переменного тока, синтез проведен в плазме водорода и метана. Процесс получения карбида вольфрама заключается в следующем: порошок оксида вольфрама WO3 подвергается воздействию плазменного потока H2 и CH4 с максимальной температурой до 10000 K. В большинстве экспериментов, расход газовой смеси составил до 0,02 г/с, мощность плазмотрона до 3 кВт. Для полученных образцов были проведены рентгенофазовый анализ, сканирующая электронная микроскопия и элементное картирование. Установлено, что при синтезе получен карбид вольфрама WC, его размеры находятся в пределах 5–20 мкм.
Приведены экспериментальные данные обтекания и разрушения вольфрамового
стержня плазменной струей из щелевого выходного отверстия плазмотрона посто-
янного тока. Предложена методика оптической онлайн-диагностики изменения фор-
мы и объема обтекаемого образца на основе теневого метода с лазерной подсветкой.
За время эксперимента 100 с на боковой (цилиндрической) поверхности стержня диа-
метром 2 мм сформировалась выраженная эрозия, а его масса уменьшилась на 0,2 г при
обтекании плазмой из аргона (расход 2 г/с, среднемассовая скорость около 140 м/с, ток
150 А, напряжение 44 В). Контрольное измерение массы на точных весах показало хо-
рошее совпадение результата обработки изображений с истинным значением.
С помощью предложенного метода показана динамика изменения массы вольфрамо-
вого стержня за время эксперимента.
Экспериментально исследуется процесс истечения высокоэнтальпийной затопленной струи газа из щелевого выходного отверстия плазмотрона постоянного тока. С по-мощью лазерного оптического теневого метода выполнена визуализация картины истечения в двух взаимно перпендикулярных плоскостях струи. Предложен метод об-работки цифровых изображений струи, который позволил определить границы струи, углы её раскрытия и их динамику – средние значения углов составили (19 2) и (11 2) в плоскостях вдоль и поперек длинной стороны щели соответственно. На основе полученных данных определен режим истечения и проведено сравнение
с известными литературными данными.