EISSN 1726-3522
Язык: ru

Архив статей журнала

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЗАДАЧИ АТМОСФЕРНОГО ЭЛЕКТРИЧЕСТВА С НЕИЗВЕСТНЫМ ИОНОСФЕРНЫМ ПОТЕНЦИАЛОМ (2023)
Выпуск: Т. 24 № 3 (2023)
Авторы: Головизнин Василий Михайлович, Милешин Иван Геннадьевич, Хапаев Михаил Михайлович

В работе рассматриваются подходы к численному решению задачи о распределении электрического потенциала в рамках двумерной модели атмосферного участка глобальной электрической цепи. Для этой модели формулируется нестандартная стационарная эллиптическая краевая задача с неклассическим граничным условием. Для численного решения этой задачи, с целью изучения возможности и эффективности распараллеливания вычислений, используются два численных алгоритма на основе метода конечных элементов. Приводятся результаты расчетов для модельной задачи, в которой не учитываются особенности рельефа земной поверхности, используется простая модель проводимости и токов.

Сохранить в закладках
КОНЕЧНОЭЛЕМЕНТНОЕ МОДЕЛИРОВАНИЕ МНОГОФАЗНЫХ ПОТОКОВ С ИХ БАЛАНСИРОВКОЙ ПРИ ФИКСИРОВАНИИ РАБОЧЕГО ДАВЛЕНИЯ НА СКВАЖИНАХ В ПРОЦЕССЕ НЕФТЕДОБЫЧИ (2022)
Выпуск: Т. 23 № 1 (2022)
Авторы: Овчинникова Анастасия Сергеевна, Патрушев Илья Игоревич, Гриф Александр Михайлович, Персова Марина Геннадьевна, Соловейчик Юрий Григорьевич

Рассмотрены подходы к моделированию многофазных потоков в нефтяном коллекторе при фиксировании рабочего давления на зонах перфорации активных скважин. Предложенный численный метод основан на неявном расчете давления и явном пересчете насыщенностей фаз в ячейках сетки на каждом временн´ом шаге. Представлено описание математической модели, общей вычислительной схемы, конечноэлементной аппроксимации поля давления. Для сохранения консервативности потоков смеси используется специальный метод балансировки, приводится его алгоритм. Проведены исследования на задаче сравнительного проекта SPE-10, для которой расчет потоков на зонах перфорации скважин при фиксированном давлении выполнялся с использованием двух подходов.

Сохранить в закладках
ОБ АНАЛИЗЕ УСТОЙЧИВОСТИ ТЕЧЕНИЙ ЖИДКОСТИ В КАНАЛЕ ЭЛЛИПТИЧЕСКОГО СЕЧЕНИЯ С ПРИМЕНЕНИЕМ МЕТОДА КОНЕЧНЫХ ЭЛЕМЕНТОВ НА НЕСТРУКТУРИРОВАННОЙ СЕТКЕ (2020)
Выпуск: Т. 21 № 4 (2020)
Авторы: Клюшнев Никита Викторович

Существующая технология численного анализа устойчивости течений вязкой несжимаемой жидкости в каналах постоянного сечения была ранее расширена на случай локальных пространственных аппроксимаций на неструктурированных сетках, приводящих к задачам с большими разреженными матрицами. Для пространственной аппроксимации при этом используется метод конечных элементов, а для решения частичных проблем собственных значений, возникающих при исследовании устойчивости течений, эффективный метод ньютоновского типа. В данной работе проводится подробное численное исследование предложенного подхода на примере двумерной конфигурации - течения Пуазейля в канале эллиптического сечения. Работоспособность подхода демонстрируется для широкого диапазона отношений длин полуосей сечения вплоть до отношения, при котором данное течение становится линейно неустойчивым. Показана сходимость ведущей части спектра по шагу сетки и совпадение результатов с результатами, полученными на основе аппроксимации спектральным методом коллокаций.

Сохранить в закладках
ПРОГРАММНЫЙ КОМПЛЕКС ДЛЯ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ РАЗРУШЕНИЯ ТЕРМОПОРОУПРУГОЙ СРЕДЫ (2020)
Выпуск: Т. 21 № 2 (2020)
Авторы: Меретин Алексей Сергеевич

Приведено описание программного комплекса для математического моделирования эволюции термопороупругой среды с учетом ее разрушения. Используемая математическая модель является модификацией модели Био для случая термопороупругих сред и позволяет моделировать изменение напряженно-деформированного состояния среды, фильтрацию флюида, неизотермические эффекты, а также разрушение среды. Разрушение среды описывается с использованием подхода континуальной механики разрушения путем введения дополнительной переменной, называемой параметром повреждаемости. Этот параметр характеризует степень разрушения среды, а его эволюция определяется заданным кинетическим уравнением. Вычислительный алгоритм основан на методе конечных элементов. Дискретизация уравнений по времени производится по неявной схеме для перемещений, давления и температуры и по явной для параметра повреждаемости. В качестве конечных элементов выбраны элементы Тейлора-Худа, имеющие второй порядок аппроксимации по перемещениям и первый по давлению и температуре. Система уравнений решается в рамках “монолитной” постановки без итерационного связывания между группами уравнений. Рассмотрены результаты расчетов с использованием программного модуля на примере задачи термического воздействия на нефтяной пласт.

Сохранить в закладках