Архив статей журнала
Предложены эвристические вероятностные алгоритмы полиномиального времени с односторонней ошибкой для распознавания кубических гиперповерхностей, чьи сингулярные локусы не содержат никакого линейного подпространства достаточно большой размерности. Эти алгоритмы легко реализовать в системах компьютерной алгебры. Алгоритмы основаны на проверке условий, что гессиан кубической формы не обращается в нуль тождественно или не определяет конус в проективном пространстве. Проверка свойств гессиана, в свою очередь, выполнима вероятностными алгоритмами с односторонней ошибкой, основанными на лемме Шварца–Зиппеля.