Архив статей журнала
В стремительно развивающейся цифровой эпохе интерфейсы человеко-машинного взаимодействия непрерывно совершенствуется. Традиционные методы взаимодействия с компьютером, такие как мышь и клавиатура, дополняются и даже заменяются более интуитивными способами, которые включают технологии отслеживания глаз. Обычные методы отслеживания глаз используют камеры, которые отслеживают направление взгляда, но имеют свои ограничения. Альтернативным и многообещающим подходом к отслеживанию глаз является использование электроэнцефалографии, техники измерения активности мозга. Исторически ЭЭГ была ограничена в основном лабораторными условиями. Однако мобильные и доступные устройства для ЭЭГ появляются на рынке, предлагая более универсальное и эффективное средство для регистрации биопотенциалов. В данной статье представлен метод локализации взгляда с использованием электроэнцефалографии, полученной с помощью мобильного регистратора ЭЭГ в виде носимой головной повязки (компании BrainBit). Это исследование направлено на декодирование нейрональных паттернов, связанных с разными направлениями взгляда, с использованием продвинутых методов машинного обучения, в частности, нейронных сетей. Поиск паттернов выполняется как с использованием данных, полученных с помощью носимых очков с камерой для отслеживания глаз, так и с использованием неразмеченных данных. Полученные в исследовании результаты демонстрируют наличие зависимости между движением глаз и ЭЭГ, которая может быть описана и распознана с помощью предсказательной модели. Данная интеграция мобильной технологии ЭЭГ с методами отслеживания глаз предлагает портативное и удобное решение, которое может быть применено в различных областях, включающих медицинские исследования и разработку более интуитивных компьютерных интерфейсов.
В качестве маркера, характеризующего загрязнение воздуха в приземном слое атмосферы современных городов, часто используется уровень концентрации твердых частиц диаметром 2.5 микрона и меньше (Particulate Matter, PM2.5). В работе обсуждается практика применения для измерения концентрации PM2.5 в условиях городской среды относительно дешевого оптического датчика, входящего в состав станции CityAir. В статье предложена статистически обоснованная корректировка получаемых станциями CityAir первичных данных о значениях концентрации взвешенных частиц PM2.5 в приземном слое атмосферы г. Красноярска. Для построения регрессионных моделей эталонными считались измерения, получаемые от анализаторов E-BAM, расположенных на тех же постах наблюдения, что и корректируемые датчики. Для анализа использовались первичные данные 1) с 9 автоматизированных постов наблюдения краевой ведомственной информационно-аналитической системы данных о состоянии окружающей среды Красноярского края (КВИАС); 2) с 21-й станции CityAir системы мониторинга Красноярского научного центра СО РАН. В работе продемонстрировано, что при корректировке показаний датчиков необходимо учитывать метеорологические показатели. Кроме того, показано, что коэффициенты регрессии существенно зависят от сезона. Проведено сравнение методов обучения с учителем для решения задачи корректировки показаний недорогих датчиков. Дополнительная информация по результатам анализа данных, не вошедшая в текст статьи, размещена на электронном ресурсе https://asm.krasn.ru/.