Архив статей журнала
Рассматривается задача оценивания состояния динамического объекта по наблюдаемым изображениям, сформированным оптической системой. Цель исследования состоит в реализации нового подхода, обеспечивающего повышение точности автономного слежения за динамическим объектом по последовательности изображений. Используется векторная модель изображения объекта в виде ограниченного количества вершин (базовых точек). Предполагается, что в процессе регистрации объект удерживается в центральной области каждого кадра, поэтому параметры движения могут описываться в виде проекций на оси системы координат, связанной с оптической осью камеры. Новизна подхода состоит в том, что наблюдаемые параметры (расстояние вдоль оптической оси и угловое положение) объекта вычисляются по координатам заданных точек на изображениях объекта. Для оценки состояний объекта строится фильтр Калмана-Бьюси в предположении, что движение динамического объекта описывается совокупностью уравнений поступательного движения центра масс вдоль оптической оси и изменений углового положения относительно плоскости изображения. Приведен пример оценивания углового положения объекта, иллюстрирующий работоспособность предложенного метода.
В современном мире Интернет вещей стал неотъемлемой частью нашей жизни. Растущее число умных устройств и их повсеместное распространение усложняют разработчикам и системным архитекторам эффективное планирование и внедрение систем Интернета вещей и промышленного Интернета вещей. Основная цель данной работы - автоматизировать процесс проектирования промышленных систем Интернета вещей при оптимизации параметров качества обслуживания, срока службы батареи и стоимости. Для достижения этой цели вводится общая четырехуровневая модель туманных вычислений, основанная на математических множествах, ограничениях и целевых функциях. Эта модель учитывает различные параметры, влияющие на производительность системы, такие как задержка сети, пропускная способность и энергопотребление. Для нахождения Парето-оптимальных решений используется генетический недоминируемый алгоритм сортировки II, а для определения компромиссных решений на Парето-фронте - метод определения порядка предпочтения по сходству с идеальным решением. Оптимальные решения, сгенерированные этим подходом, представляют собой серверы, коммуникационные каналы и шлюзы, информация о которых хранится в базе данных. Эти ресурсы выбираются на основе их способности улучшить общую производительность системы. Предлагаемая стратегия следует трехэтапному подходу для минимизации размерности и уменьшения зависимостей при исследовании пространства поиска. Кроме того, сходимость оптимизационных алгоритмов улучшается за счет использования предварительно настроенной начальной популяции, которая использует существующие знания о том, как должно выглядеть решение. Алгоритмы, используемые для генерации этой начальной популяции, описываются подробно. Для иллюстрации эффективности автоматизированной стратегии приводится пример ее применения.