Архив статей журнала
В статье рассматривается задача прогнозирования скорости человека с использованием нейросетевых технологий и компьютерного зрения для минимизации запаздывания в системах управления беговыми платформами, приводящего к риску для здоровья пользователя. Для ее решения разработан бесстрессовый алгоритм, включающий прогнозирование положения и скорости пользователя на беговой платформе, включающий процедуру расчета скорости беговой платформы на основе анализа положения и характера движения пользователя, схему сбора и обработки данных для обучения нейросетевых методов, процедуру определения необходимого количества прогнозируемых кадров для устранения запаздывания. Научная новизна исследования состоит в разработке алгоритма управления беговыми платформами, объединяющего технологии компьютерного зрения для распознавания модели тела пользователя платформы, нейронные сети и методы машинного обучения для определения итоговой скорости человека на основе объединения данных о положении человека в кадре, текущей и прогнозируемой скорости человека. Предложенный алгоритм реализован с использованием библиотек Python, проведена его апробация в ходе экспериментальных исследований при анализе предшествующих 10 и 15 кадров для прогнозирования 10 и 15 следующих кадров. В результате сравнения алгоритмов машинного обучения (линейная регрессия, дерево решений, случайный лес, многослойные, сверточные и рекуррентные нейронные сети) при различных величинах длин анализируемых и прогнозируемых кадров наилучшую точность при прогнозировании положения показал алгоритм RandomForestRegressor, а при определении текущей скорости - плотные многослойные нейронные сети. Проведены экспериментальные исследования по применению разработанного алгоритма и моделей для определения скорости человека (при прогнозе в диапазоне 10-15 кадров получена точность более 90%), а также по их интеграции в систему управления беговой платформой. Испытания показали работоспособность предложенного подхода и корректность работы системы в реальных условиях. Разработанный алгоритм позволяет не использовать чувствительные к помехам датчики, требующие закрепления на теле человека, а прогнозировать действия пользователя за счет анализа всех точек тела человека для снижения запаздывания в различных человеко-машинных системах.
Одним из основных подходов к обработке, анализу и визуализации геофизических данных является применение геоинформационных систем и технологий, что обусловлено их геопространственной привязкой. Вместе с тем, сложность представления геофизических данных связана с их комплексной структурой, предполагающей множество составляющих, которые имеют одну и ту же геопространственную привязку. Яркими примерами данных такой структуры и формата являются гравитационные и геомагнитные поля, которые в общем случае задаются трех и четырехкомпонентными векторами с разнонаправленными осями координат. При этом на сегодняшний день отсутствуют решения, позволяющие визуализировать указанные данные в комплексе, не декомпозируя их на отдельные скалярные значения, которые, в свою очередь, могут быть представлены в виде одного или многих пространственных слоев. В этой связи в работе предложена концепция, использующая элементы тензорного исчисления для обработки, хранения и визуализации информации такого формата. Формализован механизм тензорного представления компонент поля с возможностью его комбинирования с другими данными такого же формата, с одной стороны, и свертки при сочетании с данными более низкого ранга. На примере гибридной реляционно-иерархической модели данных предложен механизм хранения информации по тензорным полям, предусматривающий возможность описания и применения инструкций по трансформации при переходе между различными системами координат. В работе рассматривается применение подхода при переходе от декартовой к сферической системе координат при представлении параметров геомагнитного поля. Для комплексной визуализации параметров тензорного поля предложен подход, основанный на применении тензорных глифов. В качестве последних при этом используются суперэллипсы с осями, соответствующими рангу тензора. При этом атрибутивные значения предлагается визуализировать относительно осей графического примитива таким образом, что распределение данных может быть задано посредством варьирования градиента монохромного представления параметра вдоль оси. Работоспособность концепции была исследована в ходе сравнительного анализа тензорного подхода с решениями, основанными на скалярной декомпозиции соответствующих комплексных значений с последующим их представлением в виде одного или многих пространственных слоев. Проведенный анализ показал, что применение предложенного подхода позволит в значительной степени повысить наглядность формируемого геопространственного изображения без необходимости сложного перекрывания пространственных слоев.