Архив статей журнала

МЕТОД РАСПОЗНАВАНИЯ СЕНТИМЕНТА И ЭМОЦИЙ В ТРАНСКРИПЦИЯХ РУССКОЯЗЫЧНОЙ РЕЧИ С ИСПОЛЬЗОВАНИЕМ МАШИННОГО ПЕРЕВОДА (2024)
Выпуск: Т. 23 № 4 (2024)
Авторы: Двойникова Анастасия Александровна, Кагиров Ильдар Амирович, Карпов Алексей Анатольевич

В статье рассматривается проблема распознавания сентимента и эмоций пользователей в русскоязычных текстовых транскрипциях речи с использованием словарных методов и машинного перевода. Количество имеющихся информационных ресурсов для анализа сентимента текстовых сообщений на русском языке очень ограничено, что существенно затрудняет применение базовых методов анализа сентимента, а именно, предобработки текстов, векторизации с помощью тональных словарей, традиционных классификаторов. Для решения этой проблемы в статье вводится новый метод на основе автоматического машинного перевода русскоязычных текстов на английский язык. Частичный перевод предполагает перевод отдельных лексем, не включенных в русскоязычные тональные словари, тогда как полный перевод подразумевает перевод всего текста целиком. Переведенный текст анализируется с использованием различных англоязычных тональных словарей. Экспериментальные исследования для решения задачи распознавания сентимента и эмоций были проведены на текстовых транскрипциях многомодального русскоязычного корпуса RAMAS, извлеченных из аудиоданных экспертным путем и автоматически с использованием системы распознавания речи. В результате применения методов машинного перевода достигается значение взвешенной F-меры распознавания семи классов эмоций 31,12 % и 23,74 %, и трех классов сентимента 75,37 % и 71,60 % для экспертных и автоматических транскрипций русскоязычной речи корпуса RAMAS, соответственно. Также в ходе экспериментов было выявлено, что использование статистических векторов в качестве метода преобразования текстовых данных позволяет достичь значение показателя взвешенной F-меры на 1-5 % выше по сравнению с использованием конкатенированного (статистического и тонального) вектора. Таким образом, эксперименты показывают, что объединение всех англоязычных тональных словарей позволяет повысить точность распознавания сентимента и эмоций в текстовых данных. В статье также исследуется корреляция между длиной вектора текстовых данных и его репрезентативностью. По результатам экспериментов можно сделать вывод, что использование лемматизации для нормализации слов текстовых транскрипций речи позволяет достичь большей точности распознавания сентимента по сравнению со стеммингом. Использование предложенных методов с полным и частичным машинным переводом позволяет повысить точность распознавания сентимента и эмоций на 0,65-9,76 % по показателю взвешенной F-меры по сравнению с базовым методом распознавания сентимента и эмоций.

Сохранить в закладках
КОМБИНИРОВАННЫЙ МЕТОД ИЗВЛЕЧЕНИЯ ТЕРМИНОВ ДЛЯ ЗАДАЧИ МОНИТОРИНГА ТЕМАТИЧЕСКИХ ОБСУЖДЕНИЙ В СОЦИАЛЬНЫХ МЕДИА (2024)
Выпуск: Т. 23 № 4 (2024)
Авторы: Пимешков Вадим Константинович, Никонорова Марина Леонидовна, Шишаев Максим Геннадьевич

Извлечение терминов является важным этапом автоматизированного построения систем знаний на основе естественно-языковых текстов, поскольку обеспечивает формирование базовой системы понятий, используемой затем в прикладных задачах интеллектуальной обработки информации. В статье рассмотрена проблема автоматизированного извлечения терминов из естественно-языковых текстов с целью их дальнейшего использования при построении формализованных систем знаний (онтологий, тезаурусов, графов знаний) в рамках задачи мониторинга тематических обсуждений в социальных медиа. Данная задача характеризуется необходимостью включения в формируемую систему знаний как понятий из нескольких различных предметных областей, так и некоторых общеупотребительных понятий, используемых аудиторией социальных медиа в рамках тематических обсуждений. Кроме того, формируемая система знаний является динамичной как с точки зрения состава охватываемых ею предметных областей, так и состава релевантных понятий, подлежащих включению в систему. Применение существующих классических методов извлечения терминов в данном случае затруднительно, поскольку они ориентированы на извлечение терминов в рамках одной предметной области. Исходя из этого, для решения рассматриваемой задачи предложен комбинированный метод, совмещающий в себе подходы на основе внешних источников знаний, инструментов NER и правил. Результаты проведенных экспериментов демонстрируют эффективность предложенной комбинации подходов к извлечению терминов для задачи мониторинга и анализа тематических обсуждений в социальных медиа. Разработанный метод значительно превосходит по точности существующие инструменты извлечения терминов. В качестве дальнейшего направления исследования рассмотрена возможность развития метода для решения задачи выделения вложенных терминов или сущностей.

Сохранить в закладках
АЛГОРИТМ ОПТИМИЗАЦИИ ИЗВЛЕЧЕНИЯ КЛЮЧЕВЫХ СЛОВ НА ОСНОВЕ ПРИМЕНЕНИЯ ЛИНГВИСТИЧЕСКОГО ПАРСЕРА (2024)
Выпуск: Т. 23 № 2 (2024)
Авторы: Кравченко Даниил Юрьевич, Кравченко Юрий Алексеевич, Мансур Али, Мохаммад Жуман, Павлов Николай Сергеевич

В данной статье представлено аналитическое исследование особенностей двух типов парсинга, а именно синтаксический анализ составляющих (constituency parsing) и синтаксический анализ зависимостей (dependency parsing). Также в рамках проведенного исследования разработан алгоритм оптимизации извлечения ключевых слов, отличающийся применением функции извлечения именных фраз, предоставляемой парсером, для фильтрации неподходящих фраз. Алгоритм реализован с помощью трех разных парсеров: SpaCy, AllenNLP и Stazna. Эффективность предложенного алгоритма сравнивалась с двумя популярными методами (Yake, Rake) на наборе данных с английскими текстами. Результаты экспериментов показали, что предложенный алгоритм с парсером SpaCy превосходит другие алгоритмы извлечения ключевых слов с точки зрения точности и скорости. Для парсера AllenNLP и Stanza алгоритм так же отличается точностью, но требует гораздо большего времени выполнения. Полученные результаты позволяют более детально оценить преимущества и недостатки изучаемых в работе парсеров, а также определить направления дальнейших исследований. Время работы парсера SpaCy значительно меньше, чем у двух других парсеров, потому что парсеры, которые используют переходы, применяют детерминированный или машинно-обучаемый набор действий для пошагового построения дерева зависимостей. Они обычно работают быстрее и требуют меньше памяти по сравнению с парсерами, основанными на графах, что делает их более эффективными для анализа больших объемов текста. С другой стороны, AllenNLP и Stanza используют модели парсинга на основе графов, которые опираются на миллионы признаков, что ограничивает их способность к обобщению и замедляет скорость анализа по сравнению с парсерами на основе переходов. Задача достижения баланса между точностью и скоростью лингвистического парсера является открытой темой, требующей дальнейших исследований в связи с важностью данной проблемы для повышения эффективности текстового анализа, особенно в приложениях, требующих точности при работе в реальном масштабе времени. С этой целью авторы планируют проведение дальнейших исследований возможных решений для достижения такого баланса.

Сохранить в закладках