Архив статей журнала
В статье представлен метод классификации изображений с использованием, помимо базовой нейронной сети, дополнительной, способной адаптивно концентрироваться на классифицируемом объекте изображения. Задача дополнительной сети является задачей о контекстном многоруком бандите и сводится к предсказанию такой области на исходном изображении, при вырезании которой в процессе классификации возрастет уверенность базовой нейронной сети в принадлежности объекта на изображении правильному классу. Обучение дополнительной сети происходит с помощью методов обучения с подкреплением и стратегий достижения компромисса между эксплуатацией и исследованием при выборе действий для решения задачи о контекстном многоруком бандите. На подмножестве набора данных ImageNet-1K проведены различные эксперименты по выбору архитектуры нейронной сети, алгоритма обучения с подкреплением и стратегии исследования при обучении. Рассмотрены такие алгоритмы обучения с подкреплением, как DQN, REINFORCE и A2C, и такие стратегии исследования, как -жадная, -softmax, -decay-softmax и метод UCB1. Большое внимание уделено описанию проведенных экспериментов и обоснованию полученных результатов. Предложены варианты применения разработанного метода, демонстрирующие увеличение точности классификации изображений по сравнению с базовой моделью ResNet. Дополнительно рассмотрен вопрос о вычислительной сложности данного метода. Дальнейшие исследования могут быть направлены на обучение агента на изображениях, не задействованных при обучении сети ResNet.
Разработан метод автоматической локализации ошибок времени выполнения с помощью нейронной сети по данным трассировки осуществления функций программы. Метод сопоставляет каждой функции вероятность содержания ошибки, которая считается пропорциональной степени влияния значений параметров функции на результат выполнения программы. Влияние параметров определяется численной характеристикой (весом), вычисляемой по алгоритму Хашема. Метод применялся для отладки нескольких программ, различных по типам и причинам возникновения ошибок времени выполнения. Ошибки были расположены во вложенных функциях и проявлялись при определенных значениях входных данных. В каждой программе проведено сопоставление наиболее вероятных мест возникновения ошибок, которые определил метод, с их реальными местоположениями. Особенностями разработанного метода являются возможность работы с вложенными функциями, локализация множественных ошибок, а также ошибок, у которых место возникновения и место проявления в программе не совпадают. Во всех случаях параметры, содержащие ошибку, имели больший вес в сравнении с остальными, даже если ошибок в программе было несколько. При этом метод выделяет в программе полный путь ошибки, включающий в себя все параметры, связанные с ее возникновением. Благодаря этому с помощью предложенного метода можно определять положение логических ошибок в программах. Метод может применяться для отладки как программного, так и аппаратного обеспечения технических систем, поскольку логика его работы не зависит от источника исходных данных.