Архив статей журнала

РАЗРАБОТКА ПРОГРАММ ДЛЯ ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ НА ОСНОВЕ БАЙЕСОВСКИХ ВЕРОЯТНОСТНЫХ МОДЕЛЕЙ (2022)
Выпуск: Т. 35 № 2 (2022)
Авторы: Кожомбердиева Гульнара Исмановна, Бураков Дмитрий Петрович, Хамчичев Георгий Алексеевич

В статье представлены программы, ориентированные на применение в качестве инструмента поддержки принятия решений и реализующие оригинальные подходы к групповому экспертному рейтинговому оцениванию и нечеткому логическому выводу. В основу программ положены вероятностные модели на основе формулы Байеса, ранее предложенные авторами. В этих байесовских моделях входные оценочные данные интерпретируются как свидетельства в пользу той или иной гипотезы из множества возможных, определяемых спецификой модели: гипотез о месте того или иного объекта в рейтинге (в модели группового экспертного рейтингового оценивания) и о возможном значении выходной лингвистической переменной (в модели нечеткого вывода). Полученные свидетельства специфичным для модели способом трансформируются в набор байесовских условных вероятностей, вычисляемых в предположении истинности соответствующей гипотезы, а далее рассчитываются апостериорные распределения вероятностей на множестве этих гипотез. Апостериорные распределения используются как основа для несложного вычисления конечного результата: рейтинга объектов (в модели группового экспертного рейтингового оценивания) и дефаззифицированного значения выходной переменной (в модели нечеткого вывода). Обсуждаются особенности программной реализации моделей на платформе Java, отмечаются преимущества моделей.

Сохранить в закладках
ИНТЕГРАЦИЯ МЕТОДОВ ОБУЧЕНИЯ С ПОДКРЕПЛЕНИЕМ И НЕЧЕТКОЙ ЛОГИКИ ДЛЯ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ РЕАЛЬНОГО ВРЕМЕНИ (2023)
Выпуск: Т. 36 № 4 (2023)
Авторы: Еремеев Александр Павлович, Сергеев М. Д., Петров Виктор Степанович

В данной работе рассмотрены возможности интеграции методов обучения с подкреплением и нечеткой логики в плане повышения эффективности алгоритмов обучения с подкреплением. Главное внимание уделяется применению таких интегрированных методов в интеллектуальных системах реального времени, особенно в системах поддержки принятия решений для мониторинга и управления сложными техническими объектами. Как основа используется метод обучения с подкреплением на базе темпоральных различий, состояние среды и сигнал вознаграждения формируются с применением нечеткой логики. Представлена программная реализация и приводятся данные компьютерного моделирования методов глубокого обучения с подкреплением на основе темпоральных различий, полученные при сравнительном анализе алгоритма на основе нечеткой логики и алгоритмов на основе нейронных сетей. Показано, что основными достоинствами алгоритмов обучения с подкреплением с применением нечеткой логики являются: эффективность обучения, выражающаяся в минимизации количества эпизодов, что особенно важно, когда доступность данных для обучения ограничена или обучение в реальном времени требует быстрой адаптации; устойчивость к шуму и выбросам в данных, что важно в реальных средах, где присутствуют шумы или изменяются данные; интерпретируемость - алгоритмы с нечеткой логикой предоставляют интерпретируемые правила и выводы на основе нечеткой логики; расширение области применения обучения с подкреплением на предметные/проблемные области и задачи с непрерывным пространством состояний. Данные исследования и разработки выполняются в рамках конструирования интеллектуальных систем поддержки принятия решений реального времени. Эти системы предназначены для помощи оперативно-диспетчерскому персоналу (лицам, принимающим решения) при мониторинге и управлении сложными техническими и организационными системами в условиях достаточно жестких временных ограничений и при наличии различного типа неопределенностей (неточности, нечеткости, противоречивости) в поступающей в систему информации, то есть так называемых зашумленных данных.

Сохранить в закладках
ОРГАНИЗАЦИЯ АДАПТИВНОЙ МАРШРУТИЗАЦИИ ДАННЫХ В ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ КОМПЛЕКСАХ С ИСПОЛЬЗОВАНИЕМ ОНТОЛОГИЧЕСКИХ НЕЧЕТКИХ КЛАССИФИКАТОРОВ (2023)
Выпуск: T. 36 № 3 (2023)
Авторы: Федулов Александр Сергеевич, Лазарев Алексей Игоревич

В работе рассматриваются теоретические аспекты применения методов машинного обучения, в частности, адаптация глубоких моделей к управлению сетевыми топологиями TCP/IP электроэнергетических комплексов. Предметом исследования является подход к организации централизованного управления сегментами сети в рассматриваемой сфере. Изучение процессов взаимодействия субъектов электроэнергетических подразделений на основе разработанных онтологических моделей позволило выявить основные свойства полиформатных данных, которые могут быть уязвимыми при эксплуатации. Практическая значимость исследования заключается в создании многомодульной структуры отслеживания, классификации и прогнозировании изменений в потребляемом трафике, за счет которой возможно повышение эффективности функционирования сложных сетевых корпоративных структур. Проведено тестирование существующих алгоритмов получения хеш-функций. Его результаты позволили сделать вывод о целесообразности применения базового алгоритма шифрования BLAKE3 в качестве основного механизма верификации подлинности клиентов в сравнении с алгоритмами SHA-384, SHA-512, SHA-224, MD5. Показана реализация алгоритма нечеткого посимвольного сравнения в качестве модуля принятия решений, что подтверждает актуальность предлагаемого подхода при работе с нечеткими структурами данных. В качестве основного решения указанных проблем предложен подход к гибкому управлению сегментом электроэнергетических установок, представляемых комплексом генерирующих, электросетевых, энергосбытовых и других компаний. Основным результатом предлагаемого решения является централизованный анализ возможных изменений с учетом адаптации к сетевым нагрузкам на основе выделенных онтологических переменных. При реализации данного подхода возможна совместимость с существующими аппаратными сетевыми устройствами за счет уникальной архитектуры построенной топологии.

Сохранить в закладках