Архив статей журнала
В первой части статьи[1] обсуждалась система оценки эмоций оператора с применением глубокого машинного обучения на основе мягких вычислений и проектирование когнитивной системы управления. Данная работа развивает подход когнитивного интеллектуального управления, описывая стратегию проектирования интеллектуальных систем когнитивного управления на основе квантовых и мягких вычислений. Продемонстрирован синергетический эффект квантовой самоорганизации базы знаний, извлеченный из не робастных баз знаний интеллектуального нечеткого регулятора. Применяется информационно-термодинамический закон квантовой самоорганизации оптимального распределения базисных качеств управления (устойчивость, управляемость и робастность) и закон квантовой информационной термодинамики о возможности извлечения дополнительной полезной работы на основе извлеченной квантовой информации, скрытой в классических состояниях. Сформированная (без нарушения второго закона квантовой термодинамики) на основе извлеченного количества скрытой квантовой информации «термодинамическая» сила управления позволяет роботу (как объекту управления) совершить количественно большую полезную работу по сравнению с количеством затраченной (на извлечение квантовой скрытой информации) работу. Гарантированное достижение цели управления роботом осуществляется на основе спроектированной интеллектуальной когнитивной системы управления с применением инструментария квантового оптимизатора баз знаний QCOptKBTM, в структуру которого включен квантовый нечеткий вывод - КНВ. Квантовый алгоритм самоорганизации не робастных баз знаний КНВ структурно опирается на синергетические эффекты от скрытой квантовой информации для осуществления реализации оптимального распределения качеств управления. Данная технология позволяет повысить надежность интеллектуальных когнитивных систем управления в ситуациях управления в условиях опасности, описанных с помощью когнитивного нейроинтерфейса и различных типов взаимодействия с роботами. Примеры продемонстрировали эффективность введения схемы КНВ в качестве готового программируемого алгоритмического решения для встраиваемых интеллектуальных систем управления. Показана возможность применения нейроинтерфейса на базе когнитивного шлема с квантовым нечетким регулятором для управления транспортным средством.