Архив статей журнала
Работа посвящена проблеме безопасности систем распознавания изображений, основанных на использовании нейронных сетей. Подобные системы применяются в различных областях и крайне важно обеспечить их безопасность от атак, направленных на методы искусственного интеллекта. Рассмотрены сверточная нейронная сеть ResNet18, проверочное множество ImageNet для распознавания объектов на изображении и отнесения его к классу и состязательные атаки, которые направлены на изменение изображения, обрабатываемые данной нейронной сетью. Сверточные нейронные сети детектируют и сегментируют объекты, которые находятся на изображениях. Атака совершалась на этапе детектирования для того, чтобы не распознавалось присутствие объектов на изображении, а также на этапе сегментации, измененное изображение относило распознанный объект к другому классу. Реализована серия экспериментов, которая показала, как состязательная атака изменяет разные изображения. Для этого взяты изображения с животными и на них совершена состязательная атака, анализ результатов позволил определить количество итераций, необходимых для совершения успешной атаки. Также проведено сравнение исходных изображений с их модифицированными в ходе атаки версиями.
В работе рассмотрены методы определения авторства естественных и искусственно-сгенерированных текстов, важных в контексте кибербезопасности и защиты интеллектуальной собственности с целью предотвращения дезинформации и мошенничества. Использование методов определения автора текста обосновано выводами об эффективности рассмотренных в прошлых исследованиях fastText и метода опорных векторов (SVM). Алгоритм отбора признаков выбран на основе сравнения пяти различных методов - генетического алгоритма, прямого и обратного последовательных методов, регуляризационного отбора и метода Шепли. Рассмотренные алгоритмы отбора включают эвристические методы, элементы теории игр и итерационные алгоритмы. Наиболее эффективным методом признан алгоритм, основанный на регуляризации, в то время как методы, основанные на полном переборе, признаны неэффективными для любого множества авторов. Точность отбора на основе регуляризации и SVM в среднем составила 77 %, что превосходит другие методы от 3 до 10 % при идентичном количестве признаков. При тех же задачах средняя точность fastText - 84 %. Было проведено исследование, направленное на устойчивость разработанного подхода к генеративным образцам. SVM оказался более устойчив к запутыванию модели. Максимальная потеря точности для fastText составила 16 %, а для SVM - 12 %.
Современные подходы к решению задачи управления шагающими роботами с вращательными звеньями представляют собой разрозненные алгоритмы, строящиеся либо на готовой локомоторной программе с дальнейшей ее адаптацией, либо на сложных кинематико-динамических моделях, нуждающихся в обширных знаниях о динамике системы и окружающей среды, что в прикладных задачах зачастую является невыполнимым. Так же, используемые подходы жестко связаны с конфигурацией шагающего робота, что делает невозможным применение метода в приложениях с иной конфигурацией (другим количеством и типом конечностей). В данной статье предлагается универсальный подход к управлению движением шагающих роботов, основанный на методологии обучения с подкреплением. Рассматривается математическая модель системы управления, основанная на конечных дискретных марковских процессах в контексте методов обучения с подкреплением. Ставится задача построения универсальной и адаптивной системы управления, способной осуществить поиск оптимальной стратегии для реализации локомоторной программы в заранее неизвестной среде, путем непрерывного взаимодействия. К результатам, отличающимся научной новизной, следует отнести математическую модель данной системы, позволяющей описать процесс ее функционирования с помощью марковских цепей. Отличием от существующих аналогов является унификация описания робота.