Архив статей журнала
В статье рассматривается подход к анализу и оптимизации эффективности сетевых организационных систем в условиях активизации процессов автоматизации и цифровизации. Выделен класс организационных систем с автоматизированными устройствами обслуживания, результатом деятельности которых является выполнение услуг. Включение в сетевую структуру сервисных автоматов определяет особенность решения задач анализа и оптимизации. Анализ базируется на имитационном моделировании исследуемого класса систем как систем массового обслуживания с варьируемой топологией каналов обслуживания. Поэтому оптимизируемыми переменными определены альтернативные переменные, характеризующие компоненты топологии, которые связаны с дублированием как компонентов, так и автоматизированных устройств в целом. К этим переменным добавлены переменные, влияющие на лояльность клиентов за счет предоставления скидок в определенные временные периоды. Оптимизационная модель представляет собой объединение формализованных описаний зависимостей от оптимизируемых переменных экстремального и граничных требований. В качестве экстремального требования определена необходимость максимизации дохода, а граничных - временные характеристики, связанные с временем простоя автоматизируемых устройств и временем простоя обслуживания. Алгоритмизация принятых решений по варианту топологии сетевой системы и механизму повышения лояльности клиента основана на объединении трех составляющих итерационного процесса поиска: анализа исследуемой организационной системы с использованием имитационной модели; имитацией направленного перебора при случайных значениях альтернативных переменных; окончательного выбора на множестве перспективных вариантов путем экспертного оценивания. Предложена структурная схема алгоритма, базирующегося на интеграции перечисленных составляющих.
В статье показаны возможности применения методов машинного обучения для построения и анализа системы аутентификации на основе динамики нажатий клавиш. В работе обоснована необходимость улучшения многофакторной системы аутентификации. Предложен способ классификации работ поведенческой биометрии для сравнения и использования результатов исследований. Рассмотрены базовые возможности обработки и генерирования динамических и статических признаков динамики нажатий клавиш. Протестированы различные комбинации наборов признаков и выборок обучения, описана лучшая комбинация с равной частой ошибок (Equal Error Rate) 4,7%. Итеративный анализ качества системы позволяет установить важность первых символов последовательности ввода, а также нелинейную взаимосвязь степени ранжирования модели и EER. Высокие показатели, достигнутые бустинговой моделью, свидетельствуют о значительном потенциале поведенческой аутентификации для дальнейшего улучшения, развития и применения. Приводится значимость данного метода, его практическая полезность не только в задаче аутентификации, перспективы развития, включая использование нейросетевых методов и анализ динамики данных. Несмотря на достигнутые результаты, отмечается необходимость дальнейшей работы над моделью, включая разработку дополнительных моделей кластеризации, классификации, изменение набора признаков и построение каскада. Подчеркивается важность исследуемой области, способной принести значительный вклад в развитие информационной безопасности и технологий.