Архив статей журнала
Численное исследование различных процессов приводит к необходимости уточнения (расширения) границ применимости вычислительных конструкций и инструментов моделирования. В настоящей статье изучается дифференцируемость в пространстве интегрируемых по Лебегу функций и рассматривается согласованность этого понятия с основополагающими вычислительными построениями такими, как разложение Тейлора и конечные разности. Функцию f из L1[a;b] назовём (k,L)-дифференцируемой в точке x0 из (a;b), если существует алгебраический многочлен P, степени не выше k, такой, что интеграл по отрезку от x0 до x0+h для f−P есть o(hk+1). Найдены формулы для вычисления коэффициентов такого P, представляющие собой предел отношения интегральных модификаций конечных разностей Δmh(f,x) к hm,m=1,⋯,k. Получается, что если f∈Wl1[a;b], и f(l) является (k,L)-диффе\-ренци\-руемой в точке x0, то f приближается тейлоровским многочленом с точностью o((x−x0)l+k), а коэффициенты разложения могут быть найдены указанным выше способом. Для исследования функций из L1 на множестве применяется дискретная <<глобальная>> конструкция разностного выражения: на основе частного Δmh(f,⋅) и hm строится последовательность {Λmn[f]} кусочно-постоянных функций, подчинённых разбиениям полуинтервала [a;b) на n равных частей. Показано, что для (k,L)-диффе\-ренци\-руемой в точке x0 функции f последовательности {Λmn[f]},m=1,⋯,k, сходятся при n→∞ в этой точке к коэффициентам приближающего в ней функцию многочлена. С помощью {Λkn[f]} устанавливается теорема: {\it <<f из L1[a;b] принадлежит Ck[a;b]⟺ f равномерно (k,L)-диффе\-рен\-цируе\-ма на [a;b]>>.} Отдельное место занимает изучение построений, соответствующих случаю m=0. Их рассматриваем в L1[Q0], где Q0 -- куб в пространстве Rd. По заданной функции f∈L1 и разбиению τn полузамкнутого куба Q0 на nd равных полузамкнутых кубов построим кусочно-постоянную функцию Θn[f], определяемую как интегральное среднее f на каждом кубе Q∈τn. Данная вычислительная конструкция приводит к следующим теоретическим фактам: {\it \,1)\,f из L1 принадлежит Lp,1≤p<∞,⟺{Θn[f]} сходится в Lp; ограниченность {Θn[f]}⟺f∈L∞; 2)\,последовательности {Θn[⋅]} определяют на классах эквивалентности оператор-проектор Θ в пространстве L1; 3)\,для функции f∈L∞ получаем Θ[f]¯¯¯¯¯¯∈B, где B -- это пространство ограниченных функций, а Θ[f]¯¯¯¯¯¯ -- доопределённая на множестве меры ноль функция Θ[f](x), и выполняется равенство ∥∥Θ[f]¯¯¯¯¯¯∥∥B=∥f∥∞. } Таким образом, в семействе пространств Lp можно заменить L∞[Q0] на B[Q0].