Эта работа посвящена применению ансамблевых и нейросетевых методов машинного обучения, в частности методов CatBoost и LightGBM и сверточных нейронных сетей, для прогнозирования ВВП. В исследовании используется база винтажных данных, что позволяет выявить влияние пересмотров статистической информации на точность моделей. Полученные нами результаты показывают, что комбинации нейросетевых методов сохраняют прогнозное преимущество по сравнению с эталонными моделями – авторегрессией первого порядка, динамической факторной моделью и байесовской векторной авторегрессией – на панели стран, в том числе в периоды, включающие пандемический кризис, на предварительных и пересмотренных данных. Согласно эконометрическому тесту на доверительное множество моделей, к числу наиболее точных методов прогнозирования ВВП относятся сверточные и рекуррентные нейронные сети. Пересмотры статистических данных приводят к росту среднеквадратической ошибки эталонных моделей, ансамблевых и нейросетевых методов машинного обучения.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.