Архив статей журнала
В статье рассматриваются актуальные вопросы совершенствования организационной структуры предприятия в современных экономических условиях. Целью исследования является разработка комплекса мероприятий, направленных на оптимизацию структуры управления и повышение эффективности функционирования предприятия. Методологической основой исследования послужили труды отечественных и зарубежных ученых в области экономики, менеджмента и организации производства. В работе применялись методы системного анализа, экономико-математического моделирования, статистической обработки данных, экспертных оценок. Результаты исследования показали, что для совершенствования организационной структуры предприятия необходимо провести комплексный анализ существующей структуры, выявить ее недостатки и разработать мероприятия по их устранению. Предложен алгоритм реорганизации структуры управления, включающий этапы диагностики, проектирования, внедрения и контроля. Разработана экономико-математическая модель оптимизации структуры, учитывающая ключевые факторы внешней и внутренней среды. На примере машиностроительного завода продемонстрирована эффективность предложенных мероприятий – рост производительности труда на 12%, сокращение управленческих расходов на 8%, увеличение рентабельности на 5%. Практическая значимость исследования заключается в возможности применения разработанных рекомендаций в деятельности промышленных предприятий с целью совершенствования их организационных структур и повышения конкурентоспособности. Результаты работы могут быть использованы в образовательном процессе при подготовке специалистов экономического профиля.
В современных условиях динамично развивающегося производства и нарастающей конкуренции на рынке актуальной задачей является разработка эффективных моделей прогнозирования и управления для автоматизированных производственных систем (АПС). Данное исследование направлено на создание комплексного подхода к моделированию и оптимизации функционирования АПС с целью повышения эффективности производственных процессов, снижения затрат и обеспечения высокого качества выпускаемой продукции. Для достижения поставленных целей были применены методы математического моделирования, теории управления, оптимизации и интеллектуального анализа данных. В частности, были разработаны стохастические модели прогнозирования спроса на продукцию, учитывающие сезонные колебания и тренды рынка. Такие модели позволяют с точностью до 95% предсказывать объемы продаж на период от 1 до 6 месяцев. Для управления производственными процессами были предложены адаптивные алгоритмы планирования и диспетчеризации, основанные на методах нечеткой логики и генетических алгоритмах. Использование данных подходов позволило сократить время переналадки оборудования на 20-25% и снизить объемы незавершенного производства на 15%. Проведенные экспериментальные исследования на примере реального машиностроительного предприятия подтвердили эффективность разработанных моделей и алгоритмов. Внедрение предложенных решений позволило увеличить производительность АПС на 12%, сократить затраты на сырье и материалы на 8% и повысить качество выпускаемой продукции, снизив процент брака с 1,5%до 0,8%. Полученные результаты имеют высокую практическую значимость и могут быть использованы для повышения конкурентоспособности и эффективности функционирования предприятий различных отраслей промышленности. Дальнейшие исследования будут направлены на развитие предложенных подходов и их адаптацию для решения новых задач в условиях цифровизации производства и перехода к концепции «Индустрия 4.0».
В настоящем исследовании рассматриваются вопросы разработки и апробации интеллектуальных систем управления (ИСУ), нацеленных на повышение производительности различных технологических процессов. Актуальность данной темы обусловлена стремительным развитием информационных технологий и возрастающей потребностью в оптимизации производственных циклов для достижения максимальной эффективности и конкурентоспособности предприятий. Цель работы заключается в исследовании потенциала применения ИСУ для усовершенствования технологических процессов и разработке практических рекомендаций по их внедрению. Материалы и методы исследования включают в себя анализ существующих подходов к проектированию ИСУ, моделирование различных сценариев их функционирования, а также проведение экспериментов на реальных производственных объектах. В частности, были изучены такие методы, как нейронные сети, нечеткая логика, генетические алгоритмы и машинное обучение. Для апробации разработанных ИСУ были выбраны три предприятия различных отраслей промышленности: металлургический завод, нефтеперерабатывающий комплекс и фармацевтическая компания. Результаты исследования показали, что внедрение ИСУ позволяет значительно повысить производительность технологических процессов. Так, на металлургическом заводе удалось сократить время плавки стали на 12%, а расход энергоресурсов – на 8%. На нефтеперерабатывающем комплексе оптимизация работы установки каталитического крекинга привела к увеличению выхода светлых нефтепродуктов на 5,6%. В фармацевтической компании применение ИСУ для управления процессом синтеза активных веществ позволило на 20% снизить количество бракованной продукции и на 15% сократить время производственного цикла. Полученные результаты демонстрируют высокую эффективность использования интеллектуальных систем управления для оптимизации технологических процессов и открывают широкие перспективы для их дальнейшего применения в различных отраслях промышленности.
Хлебопекарная промышленность является одной из ключевых отраслей пищевой промышленности, играющей важную роль в обеспечении населения качественными хлебобулочными изделиями. Однако, несмотря на многовековую историю развития, данная отрасль сталкивается с рядом проблем, связанных с повышением качества продукции, снижением энергозатрат и оптимизацией производственных процессов. В настоящее время перспективным направлением решения данных проблем является применение интеллектуальных алгоритмов управления, основанных на методах искусственного интеллекта и машинного обучения. В данной статье рассматриваются возможности применения интеллектуальных алгоритмов управления для повышения качества и энергоэффективности хлебопекарного производства. Проведен анализ существующих подходов к управлению технологическими процессами хлебопечения, выявлены их недостатки и ограничения. Предложена концепция интеллектуальной системы управления хлебопекарным производством, основанная на применении методов нечеткой логики, нейронных сетей и генетических алгоритмов. Разработана математическая модель процесса выпечки хлеба, учитывающая влияние ключевых факторов, таких как температура, влажность, время выпечки и т.д. На основе данной модели создан программный комплекс, реализующий алгоритмы оптимизации режимов выпечки с целью достижения требуемых показателей качества готовой продукции при минимизации энергозатрат. Проведены экспериментальные исследования на базе действующего хлебозавода, подтвердившие эффективность предложенного подхода. Применение разработанной системы управления позволило повысить качество выпускаемой продукции на 15%, снизить расход энергоресурсов на 12% и увеличить производительность на 10%. Полученные результаты имеют важное значение для развития хлебопекарной отрасли и могут быть использованы при модернизации действующих и проектировании новых хлебозаводов. Дальнейшие исследования будут направлены на расширение функциональных возможностей разработанной системы, в частности, на реализацию адаптивных алгоритмов управления, учитывающих изменение характеристик сырья и условий внешней среды в реальном времени.
В данной статье рассматривается проблема оптимизации факторов интенсификации для повышения эффективности воспроизводственного процесса в агропромышленном комплексе. Целью исследования является разработка стратегий, направленных на максимизацию производительности и рентабельности сельскохозяйственных предприятий за счет внедрения инновационных технологий, рационального использования ресурсов и совершенствования организационно-экономических механизмов. Материалы и методы исследования включают анализ статистических данных, экспертные оценки, математическое моделирование и эконометрический анализ. В частности, были изучены показатели эффективности использования основных производственных фондов, трудовых ресурсов, материально-технической базы и финансового капитала в 120 сельскохозяйственных организациях различных регионов России за период с 2015 по 2023 годы. Применялись методы корреляционно- регрессионного анализа, оптимизационного моделирования, факторного анализа и экспертного прогнозирования. Результаты исследования показали, что ключевыми факторами интенсификации воспроизводственного процесса в АПК являются: внедрение прогрессивных агротехнологий (precision farming, биотехнологии, роботизация и автоматизация производства); оптимизация структуры посевных площадей и севооборотов; применение высокопродуктивных сортов растений и пород животных; развитие мелиорации и обеспечение рационального водопользования; совершенствование системы удобрений и средств защиты растений; модернизация машинно-тракторного парка и использование энергосберегающей техники; углубление специализации и развитие интеграционных процессов; внедрение цифровых технологий управления и информационно-консультационных систем. Расчеты показывают, что комплексная реализация предложенных стратегий позволит увеличить урожайность основных сельскохозяйственных культур на 25-40%, продуктивность животных – на 15-30%, снизить материалоемкость производства на 20-25%, повысить рентабельность до 35-45%. Прогнозируется, что к 2030 году суммарный экономический эффект от оптимизации факторов интенсификации может достигнуть 1,5-2 трлн рублей.
Применение технологий больших данных открывает новые возможности для оптимизации рецептур хлебобулочных изделий. Цель данного исследования - разработать методологию анализа больших данных для совершенствования рецептур хлеба и улучшения его потребительских свойств. В работе использованы методы интеллектуального анализа данных (data mining), машинного обучения и статистического моделирования. Эмпирическую базу составили структурированные данные о 2500 образцах хлеба, включающие подробную информацию об ингредиентах, режимах приготовления и результатах лабораторных испытаний. Применение алгоритмов кластеризации позволило выделить 5 устойчивых сочетаний ингредиентов, обеспечивающих оптимальные органолептические и физико- химические показатели готовой продукции. С помощью регрессионного анализа получены математические модели, описывающие влияние ключевых рецептурных факторов на объем и пористость хлеба. Метод опорных векторов использован для прогнозирования реологических характеристик теста в зависимости от состава смеси. Результаты исследования имеют значение для оперативной корректировки параметров технологического процесса и создания инновационных продуктов с заданными свойствами. В перспективе планируется масштабировать разработанную методологию на широкий спектр мучных изделий.
В условиях стремительного развития цифровых технологий и усложнения структуры цепочек поставок в хлебопекарной промышленности, актуальной становится проблема повышения прозрачности и эффективности управления данными процессами. Одним из перспективных инструментов решения этой задачи являются цифровые двойники – виртуальные модели реальных объектов и процессов, позволяющие осуществлять мониторинг, анализ и оптимизацию в режиме реального времени. Данное исследование направлено на изучение роли цифровых двойников в повышении прозрачности и эффективности управления цепочками поставок в хлебопекарной отрасли. Материалы и методы исследования включают анализ существующих научных публикаций, отчетов консалтинговых компаний и кейсов внедрения цифровых двойников на хлебопекарных предприятиях. Для оценки эффективности применения данной технологии были использованы методы статистического анализа, моделирования и сравнительного анализа ключевых показателей эффективности (KPI) цепочек поставок до и после
внедрения цифровых двойников. Результаты исследования демонстрируют, что использование цифровых двойников позволяет повысить прозрачность цепочек поставок хлебобулочных изделий на 30%, снизить затраты на логистику на 18-22%, сократить время выполнения заказов на 35%, а также улучшить показатели качества продукции на 15%. Кроме того, цифровые двойники способствуют оптимизации процессов планирования производства, прогнозирования спроса, управления запасами сырья и готовой продукции, что в совокупности приводит к повышению общей эффективности управления цепочками поставок в хлебопекарной отрасли на 25-30%.