Архив статей журнала
В эпоху стремительного развития цифровых технологий и растущей конкуренции на рынке, компании все чаще стремятся оптимизировать процессы обслуживания клиентов и повысить качество сервиса. Одним из наиболее перспективных инструментов для достижения этих целей является искусственный интеллект (ИИ). В данной статье рассматриваются возможности применения технологий ИИ, таких как машинное обучение, обработка естественного языка и компьютерное зрение, для автоматизации различных аспектов клиентского сервиса. Материалы и методы исследования включают анализ существующих научных публикаций, отчетов отраслевых экспертов и кейсов внедрения ИИ в сфере обслуживания клиентов. Проведен систематический обзор литературы с использованием баз данных Scopus, Web of Science и Google Scholar. Ключевыми критериями поиска были термины «искусственный интеллект», «машинное обучение», «обслуживание клиентов», «качество сервиса». Из первоначальной выборки в 647 публикаций были отобраны 54 наиболее релевантные статьи для детального анализа. Результаты исследования демонстрируют, что внедрение технологий ИИ позволяет существенно повысить эффективность и скорость обслуживания клиентов, снизить операционные расходы и улучшить клиентский опыт. Так, использование чат-ботов на базе обработки естественного языка дает возможность автоматизировать до 80% типовых клиентских запросов, сократив среднее время ответа с 5-10 минут до 1-2 минут. Алгоритмы машинного обучения, анализирующие историю взаимодействия с клиентами, помогают персонализировать коммуникации и повысить конверсию маркетинговых кампаний на 15-20%. Компьютерное зрение успешно применяется для биометрической идентификации клиентов и повышения безопасности транзакций. В статье приводятся конкретные примеры использования ИИ такими компаниями, как Amazon, Sberbank, Alibaba, Uber
В эпоху стремительного развития цифровых технологий и растущей конкуренции на рынке, компании все чаще стремятся оптимизировать процессы обслуживания клиентов и повысить качество сервиса. Одним из наиболее перспективных инструментов для достижения этих целей является искусственный интеллект (ИИ). В данной статье рассматриваются возможности применения технологий ИИ, таких как машинное обучение, обработка естественного языка и компьютерное зрение, для автоматизации различных аспектов клиентского сервиса. Материалы и методы исследования включают анализ существующих научных публикаций, отчетов отраслевых экспертов и кейсов внедрения ИИ в сфере обслуживания клиентов. Проведен систематический обзор литературы с использованием баз данных Scopus, Web of Science и Google Scholar. Ключевыми критериями поиска были термины «искусственный интеллект», «машинное обучение», «обслуживание клиентов», «качество сервиса». Из первоначальной выборки в 647 публикаций были отобраны 54 наиболее релевантные статьи для детального анализа. Результаты исследования демонстрируют, что внедрение технологий ИИ позволяет существенно повысить эффективность и скорость обслуживания клиентов, снизить операционные расходы и улучшить клиентский опыт. Так, использование чат-ботов на базе обработки естественного языка дает возможность автоматизировать до 80% типовых клиентских запросов, сократив среднее время ответа с 5-10 минут до 1-2 минут. Алгоритмы машинного обучения, анализирующие историю взаимодействия с клиентами, помогают персонализировать коммуникации и повысить конверсию маркетинговых кампаний на 15-20%. Компьютерное зрение успешно применяется для биометрической идентификации клиентов и повышения безопасности транзакций. В статье приводятся конкретные примеры использования ИИ такими компаниями, как Amazon, Sberbank, Alibaba, Uber
В данной статье рассматриваются перспективы применения технологий искусственного интеллекта (ИИ) для оптимизации технологических процессов в производстве. Целью исследования является анализ возможностей и ограничений использования ИИ в промышленности, а также выявление наиболее перспективных направлений его внедрения. В качестве материалов и методов исследования использовались обзор научной литературы по теме, анализ существующих примеров применения ИИ в производстве, а также экспертные интервью со специалистами в области ИИ и промышленного производства. Был проведен систематический поиск релевантных научных публикаций в базах данных Scopus, Web of Science и Google Scholar за период с 2010 по 2023 год. Ключевыми словами для поиска были «искусственный интеллект», «машинное обучение», «оптимизация производства», «промышленность 4.0» и др. Из найденных 2347 публикаций после анализа аннотаций было отобрано 156 наиболее релевантных работ для детального изучения. Кроме того, было проведено 12 глубинных интервью с экспертами длительностью от 40 до 90 минут. Результаты исследования показали, что применение ИИ позволяет значительно повысить эффективность производственных процессов. Наибольший потенциал ИИ демонстрирует в таких областях, как предиктивное обслуживание оборудования (снижение внеплановых простоев на 30-50%), оптимизация работы промышленных роботов (повышение производительности на 10-25%), интеллектуальное управление запасами (сокращение складских издержек на 20-40%), контроль качества на основе компьютерного зрения (выявление до 90% дефектов). Однако для успешного внедрения ИИ необходимо преодолеть ряд барьеров, в числе которых недостаток качественных данных для обучения моделей, дефицит квалифицированных кадров на стыке ИИ и производства, высокая стоимость решений и интеграции. В среднем внедрение комплексных систем ИИ на производстве занимает от 1 до 3 лет и окупается за 2-5 лет
В современных условиях динамично развивающегося производства и нарастающей конкуренции на рынке актуальной задачей является разработка эффективных моделей прогнозирования и управления для автоматизированных производственных систем (АПС). Данное исследование направлено на создание комплексного подхода к моделированию и оптимизации функционирования АПС с целью повышения эффективности производственных процессов, снижения затрат и обеспечения высокого качества выпускаемой продукции. Для достижения поставленных целей были применены методы математического моделирования, теории управления, оптимизации и интеллектуального анализа данных. В частности, были разработаны стохастические модели прогнозирования спроса на продукцию, учитывающие сезонные колебания и тренды рынка. Такие модели позволяют с точностью до 95% предсказывать объемы продаж на период от 1 до 6 месяцев. Для управления производственными процессами были предложены адаптивные алгоритмы планирования и диспетчеризации, основанные на методах нечеткой логики и генетических алгоритмах. Использование данных подходов позволило сократить время переналадки оборудования на 20-25% и снизить объемы незавершенного производства на 15%. Проведенные экспериментальные исследования на примере реального машиностроительного предприятия подтвердили эффективность разработанных моделей и алгоритмов. Внедрение предложенных решений позволило увеличить производительность АПС на 12%, сократить затраты на сырье и материалы на 8% и повысить качество выпускаемой продукции, снизив процент брака с 1,5%до 0,8%. Полученные результаты имеют высокую практическую значимость и могут быть использованы для повышения конкурентоспособности и эффективности функционирования предприятий различных отраслей промышленности. Дальнейшие исследования будут направлены на развитие предложенных подходов и их адаптацию для решения новых задач в условиях цифровизации производства и перехода к концепции «Индустрия 4.0».
В настоящем исследовании рассматриваются вопросы разработки и апробации интеллектуальных систем управления (ИСУ), нацеленных на повышение производительности различных технологических процессов. Актуальность данной темы обусловлена стремительным развитием информационных технологий и возрастающей потребностью в оптимизации производственных циклов для достижения максимальной эффективности и конкурентоспособности предприятий. Цель работы заключается в исследовании потенциала применения ИСУ для усовершенствования технологических процессов и разработке практических рекомендаций по их внедрению. Материалы и методы исследования включают в себя анализ существующих подходов к проектированию ИСУ, моделирование различных сценариев их функционирования, а также проведение экспериментов на реальных производственных объектах. В частности, были изучены такие методы, как нейронные сети, нечеткая логика, генетические алгоритмы и машинное обучение. Для апробации разработанных ИСУ были выбраны три предприятия различных отраслей промышленности: металлургический завод, нефтеперерабатывающий комплекс и фармацевтическая компания. Результаты исследования показали, что внедрение ИСУ позволяет значительно повысить производительность технологических процессов. Так, на металлургическом заводе удалось сократить время плавки стали на 12%, а расход энергоресурсов – на 8%. На нефтеперерабатывающем комплексе оптимизация работы установки каталитического крекинга привела к увеличению выхода светлых нефтепродуктов на 5,6%. В фармацевтической компании применение ИСУ для управления процессом синтеза активных веществ позволило на 20% снизить количество бракованной продукции и на 15% сократить время производственного цикла. Полученные результаты демонстрируют высокую эффективность использования интеллектуальных систем управления для оптимизации технологических процессов и открывают широкие перспективы для их дальнейшего применения в различных отраслях промышленности.
Данная статья посвящена исследованию влияния внедрения ERP-систем на эффективность управления производственными ресурсами в хлебопекарной отрасли. Актуальность темы обусловлена необходимостью оптимизации бизнес-процессов в условиях растущей конкуренции и ограниченности ресурсов. Цель работы - выявить ключевые факторы и механизмы воздействия ERP-систем на показатели эффективности управления производством на хлебопекарных предприятиях. Методология исследования включает анализ статистических данных по 50 предприятиям отрасли за период с 2018 по 2022 гг., серию глубинных интервью с руководителями производства (n=20), а также экспертный опрос специалистов по внедрению ERP-решений (n=10). Для обработки количественных данных применялись методы описательной статистики, корреляционного и регрессионного анализа. Качественные данные подвергались процедурам осевого и выборочного кодирования. Результаты показали, что внедрение ERP-систем позволяет достичь среднего роста производительности труда на 12,5%, сокращения производственных издержек на 8,2%, уменьшения объемов незавершенного производства на 15,3%. При этом ключевое значение имеют учет отраслевой специфики при разработке функционала системы, скорость и непрерывность информационных потоков, вовлеченность персонала в процесс цифровой трансформации. Практическая значимость исследования состоит в возможности использования его выводов и рекомендаций при принятии решений о внедрении ERP-систем на хлебопекарных предприятиях. В теоретическом плане работа вносит вклад в развитие концепции Industry 4.0 применительно к пищевой промышленности. Перспективы дальнейших исследований связаны с изучением синергетического эффекта от интеграции ERP-систем с другими технологиями Индустрии 4.0 (IIoT, Big Data и др.)
Интеграция автоматизированных систем в производственные процессы является одним из ключевых факторов повышения эффективности и конкурентоспособности современных предприятий. Данное исследование посвящено анализу эффективности внедрения систем автоматизации в технологические процессы производства на примере ряда промышленных предприятий России. Основной целью работы является выявление ключевых преимуществ и потенциальных проблем, связанных с автоматизацией производства, а также разработка рекомендаций по оптимизации процесса внедрения автоматизированных систем. Материалы и методы исследования включают в себя анализ статистических данных, полученных от предприятий-участников исследования, а также проведение интервью с руководителями и специалистами в области автоматизации производства. В рамках исследования были рассмотрены такие показатели, как увеличение производительности, снижение затрат, повышение качества продукции и уровень удовлетворенности персонала. Для обработки данных применялись методы статистического анализа, включая регрессионный анализ и анализ временных рядов. Результаты исследования показывают, что внедрение систем автоматизации приводит к значительному повышению эффективности производственных процессов. В частности, на предприятиях-участниках исследования наблюдалось увеличение производительности в среднем на 24%, снижение производственных затрат на 18% и повышение качества продукции на 15%. Кроме того, автоматизация способствовала улучшению условий труда и повышению уровня удовлетворенности персонала. Однако, исследование также выявило ряд потенциальных проблем, связанных с внедрением автоматизированных систем, таких как необходимость значительных финансовых инвестиций, потребность в высококвалифицированном персонале и риск технических сбоев. На основе полученных результатов были разработаны рекомендации по оптимизации процесса внедрения автоматизированных систем в производство, включающие тщательное планирование, постепенное внедрение, обучение персонала и регулярное техническое обслуживание. Применение данных рекомендаций позволит предприятиям максимизировать преимущества автоматизации и минимизировать потенциальные риски.