Архив статей журнала
Работа посвящена вопросам реализации разработанной авторами математической модели дыхательной системы человека, предназначенной для прогнозирования возникновения патологий органов дыхания, обусловленных негативным воздействием загрязняющих компонентов атмосферного воздуха. Предложенная модель описывает легкие как упруго-деформируемую насыщенную двухфазную пористую среду, испытывающую большие градиенты перемещений. Поскольку аналитическое решение поставленной существенно нелинейной задачи представляется нереализуемым, для решения предлагается прибегать к численным методам с пошаговыми процедурами. Предложен алгоритм решения связанной задачи фильтрации воздуха в упруго-деформируемой пористой среде. Численное решение нелинейной подзадачи деформирования двухфазной среды легких осуществляется методом конечных элементов, подзадачи фильтрации — методом конечных объемов. Для реализации алгоритма разработан комплекс программ (на языке C++) с применением технологий параллельных вычислений. На основе томографических снимков легких, получаемых с помощью интерактивного программного продукта ITK-SNAP, выполняется восстановление трехмерной формы легких. С использованием пакета ANSYS ICEM CFD строится объемная конечно-элементная сетка. Численное моделирование течения воздуха в легких человека производится для персонализированной трехмерной геометрии. Представлены поля давления газовой фазы в легких человека в различные моменты дыхательного цикла. Разработанную модель в дальнейшем планируется рассматривать как инструмент для определения зон риска развития патологий органов дыхания, обусловленных негативным воздействием аэрогенных факторов среды обитания.
Актуальная тенденция в области экспериментальной механики деформируемого твердого тела состоит в расширении номенклатуры типов опытных образцов. В настоящей статье рассматривается эксперимент по мягкому нагружению так называемого бразильского диска с двумя наклонными трещинами. Испытания образцов указанного типа предоставляют важную информацию по хрупкому и квазихрупкому разрушению в режиме смешанного нагружения (I+II моды). При практическом использовании у образцов в окрестности вершины трещины необходимо знать значения параметров напряженного состояния, таких как коэффициенты интенсивности напряжений KI, KII и T-напряжение. К сожалению, по причине сложной геометрии образцов для нахождения этих параметров не существует аналитических выражений, и они вычисляются с помощью конечно-элементного моделирования с пост-процессорной обработкой решений. Описанная процедура наталкивается на значительные алгоритмические трудности, поэтому применимость новых образцов остается ограниченной. Для упрощения вычислительных экспериментов авторами предлагается подход, основанный на аппроксимации зависимости искомых параметров напряженного состояния от аргументов задачи, а именно, от размеров образца–диска, длины трещин и угла их наклона по отношению к оси нагрузки. Аппроксимация искомых параметров строится исходя из решения линейной задачи о наименьшем среднеквадратичном отклонении. Для точной аппроксимации могут потребоваться полиномы со слагаемыми больших степеней, но наличие избыточного числа мономов приводит к стремительному увеличению количества коэффициентов в аппроксиматоре и, как следствие, к быстрому ухудшению обусловленности задачи. В итоге существенно ухудшается точность и устойчивость аппроксимации. Во избежание избыточной параметризации рассматриваются три способа построения базисов в пространстве аппроксимирующих полиномов. Точность построенных аппроксиматоров оценивается путем сравнения с данными, полученными при численном моделировании и подтвержденными экспериментом. Как показали расчеты, погрешность аппроксиматоров составляет около 1% для каждого из отыскиваемых параметров напряженного состояния. Полученные аппроксиматоры доступны в виде скрипта для MATLAB, открытого для свободного доступа через облачную платформу GitHub.