Архив статей журнала
Предложены метод стабилизации обнаружения структурных аномалий в условиях аддитивных шумов, а также алгоритм формального выбора параметров решающего правила в обнаружителе структурных аномалий на основе метода Robust Random Cut Forest (RRCF).
Метод:
В рамках разработанного метода, для стабилизации процесса обнаружения структурных аномалий в условиях воздействия аддитивных шумов, предложено подавать на вход RRCF-обнаружителя поток данных, который предварительно обработан одним из методов цифровой фильтрации.
При этом правило принятия решения об обнаружении аномалии строго формализовано и прозрачно интерпретируется.
Основные результаты:
Формализован выбор параметров стабилизированного методами предварительной фильтрации данных входного потока обнаружителя аномалий на базе RRCF.
Параметр обнаружителя, выбранный в рамках предложенный схемы, гарантирует априорно заданную верхнюю границу для вероятности ложной тревоги при принятии решения об обнаружении структурной аномалии.
Это свойство строго доказано и оформлено в виде теоремы.
Эффективность работы стабилизированного RRCF-обнаружителя аномалий исследована численным методом.
Достигнутые результаты подтверждают работоспособность рассмотренного подхода при условии выбора порога обнаружения предложенным способом.
Приведен пример практического использования предложенного RRCF-обнаружителя.
Обсуждение:
Разработанный подход перспективен для обнаружения структурных аномалий в условиях зашумления наблюдений аддитивной помехой, в случае, когда важно гарантировать верхнюю границу для вероятности ложной тревоги.
В частности, подход может найти применение при контроле технологических режимов прокачки жидкости в трубопроводных системах или в системах обнаружения предотказных состояний технологического оборудования.