Архив статей журнала
Рассмотрено цензурирование обучающих выборок с учетом специфики реализации алгоритмов метода ближайшего соседа.
Процесс цензурирования связан с использованием множества граничных объектов классов по заданной метрике с целью: поиска и удаления шумовых объектов; анализа кластерной структуры обучающей выборки по отношению связанности.
Исследуются специальные условия удаления шумовых объектов и формирования базы прецедентов для обучения алгоритмов.
Распознавание объектов по такой базе должно обеспечивать более высокую точность с минимальными затратами вычислительных ресурсов относительно исходной выборки.
Метод: Разработаны необходимые и достаточные условия для отбора шумовых объектов из множества граничных. Необходимое условие принадлежности граничного объекта к множеству шумовых задается в виде ограничения (порога) на отношение расстояний до ближайшего объекта из своего класса и его дополнения.
Поиск минимального покрытия обучающей выборки эталонами производится на основе анализа кластерной структуры. Эталоны представлены объектами выборки.
Структура отношений связанности объектов по системе гипершаров используется для их группировки.
Состав групп формируется из центров (объектов выборки) для гипершаров, в пересечении которых содержатся граничные объекты.
Значение меры компактности вычисляется как среднее число объектов обучающей выборки за вычетом шумовых, притягиваемое одним эталоном минимального покрытия.
Выполняется анализ связи обобщающей способности алгоритмов при машинном обучении со значением меры компактности.
Наличие связи обосновывается по критерию (регуляризатору) для отбора числа и состава множества шумовых объектов.
Основные результаты: Показана связь между значением меры компактности обучающей выборки и обобщающей способностью алгоритмов распознавания.
Связь выявлена по эталонам минимального покрытия выборки, из которых сформирована база прецедентов.
Обнаружено, что точность распознавания по базе прецедентов выше, чем на исходной выборке.
Минима
Современные технологии искусственного интеллекта находят применение в различных областях науки и повседневной жизни.
Повсеместное внедрение систем, основанных на методах искусственного интеллекта, выявило проблему их уязвимости перед состязательными атаками, включающими методы обмана искусственной нейронной сети и нарушения ее работы.
В работе основное внимание уделено защите моделей распознавания изображений от состязательных атак уклонения, признанных в настоящее время наиболее опасными.
При таких атаках создаются состязательные данные, содержащие незначительные искажения относительно исходных, и происходит отправка их на обученную модель с целью изменения ее «ответа» на вариант, необходимый злоумышленнику.
Искажения могут включать добавление шума или изменение нескольких пикселов
изображения.
Рассмотрены наиболее актуальные подходы к созданию состязательных данных: метод быстрого градиента (Fast Gradient Sign Method, FGSM), метод квадрата (Square Method, SQ), метод прогнозируемого градиентного спуска (Predicted Gradient Descent, PGD), базовый итеративный метод (Basic Iterative Method, BIM), метод Карлини и Вагнера (Carlini-Wagner, CW), метод карт значимости Якобиана (Jacobian Saliency Map Attack, JSMA).
Исследованы современные методы противодействия атакам уклонения, основанные на модификации модели — состязательное обучение и предварительная обработка поступающих данных: пространственное сглаживание, сжатие признаков, JPEG-сжатие, минимизация общей дисперсии, оборонительная дистилляция.
Эти методы эффективны только против определенных видов атак. На сегодняшний день ни один метод противодействия не может быть применен в качестве универсального решения.
Метод:
Предложен новый метод, сочетающий состязательное обучение с предварительной обработкой изображений.
Состязательное обучение выполнено на основе состязательных данных, создаваемых с распространенных атак, что позволяет эффективно им противодействовать.
Предварительная обработка изображений предназначена для противодей
Предложены метод стабилизации обнаружения структурных аномалий в условиях аддитивных шумов, а также алгоритм формального выбора параметров решающего правила в обнаружителе структурных аномалий на основе метода Robust Random Cut Forest (RRCF).
Метод:
В рамках разработанного метода, для стабилизации процесса обнаружения структурных аномалий в условиях воздействия аддитивных шумов, предложено подавать на вход RRCF-обнаружителя поток данных, который предварительно обработан одним из методов цифровой фильтрации.
При этом правило принятия решения об обнаружении аномалии строго формализовано и прозрачно интерпретируется.
Основные результаты:
Формализован выбор параметров стабилизированного методами предварительной фильтрации данных входного потока обнаружителя аномалий на базе RRCF.
Параметр обнаружителя, выбранный в рамках предложенный схемы, гарантирует априорно заданную верхнюю границу для вероятности ложной тревоги при принятии решения об обнаружении структурной аномалии.
Это свойство строго доказано и оформлено в виде теоремы.
Эффективность работы стабилизированного RRCF-обнаружителя аномалий исследована численным методом.
Достигнутые результаты подтверждают работоспособность рассмотренного подхода при условии выбора порога обнаружения предложенным способом.
Приведен пример практического использования предложенного RRCF-обнаружителя.
Обсуждение:
Разработанный подход перспективен для обнаружения структурных аномалий в условиях зашумления наблюдений аддитивной помехой, в случае, когда важно гарантировать верхнюю границу для вероятности ложной тревоги.
В частности, подход может найти применение при контроле технологических режимов прокачки жидкости в трубопроводных системах или в системах обнаружения предотказных состояний технологического оборудования.